数学解题方

时间:2025-11-29 12:32:58 好文 我要投稿
  • 相关推荐

数学解题方法范例[15篇]

数学解题方法1

  一、学习目标

数学解题方法范例[15篇]

  1.掌握负命题的解题技巧;

  2.掌握鲁宾逊定理,并能灵活运用。

  二、基础知识

  1.负命题就是否定某个命题的命题,又叫命题的否定。其联结项通常用“并非”或“非”表示,即“并非P或者非P”。

  在题目中,除了“并非…”之外,还有“并不是…,…是不对的,…是假的,…是错误的,…是荒谬的等”。

  2.鲁宾逊定理

  -(P→Q)=P且-Q

  -(P且-Q)=(P→Q)

  三、经典例题

  例1.小张承诺:如果天不下雨,我一定去听音乐会。

  以下哪项为真,说明小张没有兑现承诺?

  I天没下雨,小张没去听音乐会。

  II天下雨,小张去听了音乐会。

  III天下雨,小张没去听音乐会。

  A.仅I。

  B.仅II。

  C.仅III。

  D.仅I和II。

  E.I、II和III。

  【答案】A

  【解析】题干可翻译为“天不下雨→去听音乐会”。“小张没有兑现承诺”,意思就是对小张说的这句话进行否定,即对“天不下雨→去听音乐会”进行否定,根据鲁宾逊定理可得-(天不下雨→去听音乐会)=天不下雨,且没去听音乐会。所以,本题的正确选项为A。

  例2.麦老师:只有博士生导师才能担任学校“高级职称评定委员会”评委。

  宋老师:不对。董老师是博士生导师,但不是“高级职称评定委员会”评委。

  宋老师的.回答说明他将麦老师的话错误地理解为()。

  A.有的“高级职称评定委员会”评委是博士生导师。

  B.董老师应该是“高级职称评定委员会”评委。

  C.只要是博士生导师,就是“高级职称评定委员会”评委。

  D.并非所有的博士生导师都是“高级职称评定委员会”评委。

  E.董老师不是学科带头人,但他是博士生导师。

  【答案】C

  【解析】麦老师所说的话可以翻译为“评委→博导”;宋老师所说的话可以写成“博导且-评委”。根据鲁宾逊定理可知,宋老师所说的话是对“博导→评委”进行否定,也就是宋老师将麦老师的话理解为了“博导→评委”。逐一分析选项,A项“有的”,错误;B项,无关,错误;C项“博导→评委”,正确;D项“有的博士生导师不是高级职称评定委员会评委”,错误;E项无关,错误。所以,本题的正确选项是C。

数学解题方法2

  解题思路的获得,一般要经历三个步骤:

  1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。

  数学的表达,有3种方式:

  1.文字语言,即用汉字表达的内容;

  2.图形语言,如几何的图形,函数的图象;

  3.符号语言,即用数学符号表达的内容,比如AB∥CD。

  在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。

  先来看转化思想:

  我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的'问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。

  如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。

数学解题方法3

  初中数学待定系数法解题,同学们有了解题的方法,按照步骤来,相信解答数学题目不再是难题哦。更多关于初中数学的学习方法尽在。

  数学的解题方法是随着对数学对象的研究的深入而发展起来的。六年级的同学们很快就要小学毕业,中学的大门已经向我们敞开。为了能进一步学好数学,有必要掌握初中数学的特点尤其是解题方法。下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。

  数学的解题方法是随着对数学对象的研究的深入而发展起来的。六年级的同学们很快就要小学毕业,中学的大门已经向我们敞开。为了能进一步学好数学,有必要掌握初中数学的特点尤其是解题方法。下面介绍的解题方法,都是初中数学中最常用的`,有些方法也是中学教学大纲要求掌握的。

  待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

数学解题方法4

  我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。

  少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!

  华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:

  有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。

  3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。

  聪明的小读者,想想看,他们是怎么知道帽子颜色的.呢?“

  为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。

  这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。

  看到这里。同学们可能会拍手称妙吧。后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。

数学解题方法5

  1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一

  5、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的.分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

数学解题方法6

  1.直接法

  有些选择题是由计算题、应用题、证明题、判断题改编而成的。这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。

  2.筛选法

  初中数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后,结论只有一个,则为应选项。

  3.验证法

  通过对试题的`观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

  4.特殊值法

  有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

  5.图象法

  在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

  6.试探法

  对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。

数学解题方法7

  甲、乙两列火车的速度比是5:4,乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

  解析:

  利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米

  利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米。

  甲放学回家需走10分钟,乙放学回家需走14分钟。已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

  解析:

  如果甲的速度和乙相同,那么甲的`路程应该是乙的10/14=5/7,比乙少2/7;

  而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。

  所以,这120米就是乙路程的2/7-1/7=1/7;

  乙回家的路程为:120/(1/7)=840米。

  两种基本的方法

  方法一:

  乙行甲那么远的路,就要14÷(1+1/6)=12分钟

  所以甲回家有12÷(1/10-1/12)=720米

  所以乙回家的路程是720×(1+1/6)=840米

  方法二:

  甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟

  所以乙回家的路程是12÷(3/35-1/14)=840米

数学解题方法8

  第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

  因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

  因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

  第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的.含义。如20xx年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

  再如数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。

  如第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

数学解题方法9

  中考是通过解题来判断学生数学能力的,中考复习的最终成果要落实到解题能力的提高上来。解题训练要做到“举一反三,熟练运用”,但不能盲目地、无目的地、重复地、无选择地强化训练,采取题海战术只能事倍功半。

  (1)以中档综合题为训练重点。

  ①中档综合题区分度好,训练价值高,教师讲得清楚,学生听得明白,有利于学生数学素质的提高。

  ②中下档题目是考生得分的主要来源,是进一步去解高档题的基础。

  ③高档题要有,但要控制数量,重在讲清“怎样解”,从何处下手、向何方前进。

  (2)以近年中考题和各区县中考模拟考题为基本素材。

  ①中考试题或模拟考题经过考生的实践检验和广大教师的深入研讨,科学性强(漏洞也清楚),解题思路明朗,解题书写规范,评分标准清晰,是优质的训练素材。

  ②中考试题或模拟考题都努力抓课程的重点内容和重要方法,并且每套中考试题或模拟考题能覆盖全部知识点的60%~80%,几套试题一交*,既保证了全面覆盖,又体现了重点突出。

  ③近年中考试题或模拟考题能反映命题风格、命题热点、命题形式(特别是新题型)的新动向、新导向,以近年中考题为基本素材,有利于考生适应中考情境,提高中考复习的针对性。中考题型的创新形式主要有:情景题、应用题、开放题、操作题、探索题等,体现出“经历、体验、探索”的过程性目标,表现为情景性、应用性、开放性、过程性、探究性。

  (3)以提高解题准确和速度为突破口。

  中考要在100分钟完成25道题,30多问,题量是比较多的',而且有大量实际情况、或过程呈现的叙述,阅读量又是比较大的。怎样提高学生的解题速度呢?由熟到快——原则性建议是:

  ①深刻理解基础知识,熟练掌握基本方法,努力形成基本技能。

  ②合理安排考试时间,书写做到数学语言是通用、精确、简约的科学语言。

  ③平时进行速度训练。以此来加快书写速度,降低思维难度,提高解题质量。

数学解题方法10

  1、简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

  2、解题步骤:

  a.审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

  也可以复述条件和问题,帮助理解题意。

  b.选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,

  联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的.单位名称。

  c.检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

  d.答案:根据计算的结果,先口答,逐步过渡到笔答。

  3、解答加法应用题:

  a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

  b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

  4、解答减法应用题:

  a.求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

  b.求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

  c.求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

  5、解答乘法应用题:

  a.求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

  b.求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

  6、解答除法应用题:

  a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

  b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

  c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

  d.已知一个数的几倍是多少,求这个数的应用题。

数学解题方法11

  复习备考需要足够数量的习题,只有针对性训练才能在中考得以正常发挥,只有每天动笔适当的做些习题才能保持思维的连贯性。但仅仅做题还是远远不够,需要解题后的反思与总结。在反思中才能进一步看透问题的本质,体会命题的意图。在总结的过程中也才能优化解题的'思路,探索处理问题规律,形成有自己特色的经验。

  在复习中既要注重数学概念、法则、定理等基础知识的梳理,更要关注解题后的反思与总结,领会解题中蕴含的数学思想方法,并通过不断积累逐渐的纳入自己已有的知识体系。在反思总结中可以从两方面考虑:一是宏观层面,如每复习一块内容后可以从主要知识考点、考点之间的联系等去反思;二是微观层面,如解题后的可以对所解题的结构是否理解清楚,解题过程中运用了哪些基础知识和基本技能?哪些步骤易出错?原因何在?如何防止?也可以对解题的方法进行评价找出最优的解法,考虑解题中运用了哪些思维方式、数学思想方法?想法是如何分析出来的?有无规律可循?也可以对解题步骤进行分析,抓住解题的关键。如解题的难点在哪?我是如何突破的?能否用其他方法也得到同样结果?其方法的优劣所在?若能把反思与总结当作一个经常性、自觉性的学习行为,就会在不断地积累和总结基本的数学活动经验中,提高数学知识的运用能力。

数学解题方法12

  下面是对数学解题方法面积法的讲解,同学们认真看看。

  面积法

  平面几何中讲的面积公式以及由面积公式推出的'与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

  用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  面积法对于立体图形类的证明题目是经常用到的,同学们认真学习,希望在这方面做的很好。

数学解题方法13

  "瞻前顾后"出自《楚辞.离骚》,含义是看看前面,又看看后面。形容考虑或处理事情谨慎周到。

  解答数学题时,很多同学只追求"做出来",有了一个答案便不再深入思考,缺乏"瞻前顾后"的良好习惯,从而忽略了另外的可能性。

  例题:甲、乙两车同时从A、B两地相向开出,甲车每小时行45千米,乙车每小时行55千米,4小时后两车相距20千米。求A、B两地的.距离。

  分析与解:这是一道比较简单的行程问题,大多数同学可能这样列式计算:(45+55)×4+20=420(千米)。其实很多同学在解题时忽视了另一种情况:如果两车行驶了4小时已经相遇,并且一共又多行了20千米,那么两地的距离就应该是两车4小时所行的路程再减去20千米。因此,还可以这样列式计算:(45+55)×4-20=380(千米)。这道题存在两种可能性所以答案不是唯一的。

数学解题方法14

  提高解数学综合性问题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的同学来说,是一道生命线,往往成也萧何败也萧何;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。

  1.综合题在高考试卷中的位置与作用:

  数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。

  2.解综合性问题的三字诀:

  三性:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好三性,即:

  (1)目的性:明确解题结果的终极目标和每一步骤分项目标。

  (2)准确性:提高概念把握的准确性和运算的准确性。

  (3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。

  三化:

  (1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。

  (2)问题简单化。即把综合问题分解为与各相关知识相联系的简单问题,把复杂的'形式转化为简单的形式。

  (3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。

  三转:

  (1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。

  (2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。

  (3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。

  三思:

  (1)思路:由于综合题具有知识容量大,解题方法多,因此,审题时应考虑多种解题思路。

  (2)思想:高考综合题的设置往往会突显考查数学思想方法,解题时应注意数学思想方法的运用。

  (3)思辩:即在解综合题时注意思路的选择和运算方法的选择。

  三联:

  (1)联系相关知识,(2)连接相似问题,(2)联想类似方法。

  3.对平时综合练习的反思:

  平时做完综合练习后,要注重反思这一环节,注意方法的优化。要把解题的过程抽象形成思维模块,注意方法的迁移和问题的拓展。再最后的自由复习阶段也可选取部分做过的综合卷中的压轴题进行反思,主要研究:审题分析的过程(如:寻求条件与结论联系,与基础知识的联系,与平时基本方法的联系)、隐含条件的运用、计算方法及准确性。

数学解题方法15

  一、数学解题方法与技巧教学的研究

  前面所说的数学习过程的练习题一般是由标准答案,已知和求解都是十分清楚的。而实际生活中许多问题预先是不知答案或者不一定有统一的答案,甚至可能没有答案,这样一类可以用数学方法去研究和解决的问题称为数学问题解答。它的常见类型和价值是这样的。

  1. 可以构建数学模型的非常规的实际问题。这类问题往往不是纯数学化的问题模式,而是一种情景,一种实际需求,只是为了解决遇到的困难,需要讲实际问题转化为数学模型并进行解释与解决。这是在生活和实践中运用数学最常用的方式,培养的是学生面对实际进行的问题解决能力。

  2. 探究性问题:要求的是通过一定的探索,研究来认识数学对象的性质,去发现其数学规律,这种问题要求一种研究式的思维能力,在问题解决过程中感受发现的乐趣,它培养的是一种主动探索精神和科学态度。

  3. 开放性问题:是问题的条件、结论、解题策略或应用等方面具有一定的开放程度的问题,学生在研究这类问题时通常采用的是合作研究,这种方式可互相启发学生的合作与交流,在交流和合作中完善和优化自己的思维。这类问题的解决可培养学生的思维的灵活性和发散性。培养学生的创新意识。

  二、解题的方法与技巧

  数学思想方法在解题中有不可忽视的作用

  解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题 和 老师的讲解进行反思,思考例题的方法、技巧和解题的`规范过程;然后做数学练习题。

  基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说过“如果没有反思,就错过了解题的的一次重要而有意义的方面。”

  教师在教学设计中要让学生解好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。

【数学解题方】相关文章:

数学解题方法11-28

【精选】数学解题方法11-28

(热门)数学解题方法15篇11-28

中考数学的实用解题技巧02-01

数学解题方法15篇(热门)11-28

数学解题方法15篇【必备】11-29

高一数学解题套路分享03-11

中考数学解题技巧与压轴题的解法04-12

看我解题绝招作文05-06