数学解题方

时间:2025-11-28 23:18:58 好文 我要投稿
  • 相关推荐

数学解题方法15篇(热门)

数学解题方法1

  数学填空题解题技巧

数学解题方法15篇(热门)

  数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是中考数学中的三种常考题型之一。它和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍、跨度大、知识覆盖面广、考查目标集中,形式灵活,答案简短、明确、具体,评分客观、公正、准确等。

  填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题。这说明了填空题是数学中考命题重要的组成部分,它约占了整张试卷的三分之一。因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备。解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。

  解答填空题的基本策略是准确、迅速、整洁。准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免“超时失分”现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的'书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。中考中的数学填空题一般是容易题或中档题,数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

  方法解析

  一、直接法

  这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。

  二、特殊化法

  当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。

  三、数形结合法

  “数缺形时少直观,形缺数时难入微。”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到“数促形”的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

  四、等价转化法

  通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

数学解题方法2

  反证法在解答证明题目中会经常用到,同学们认真学习下面的解题方法。

  反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的`,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  对于反证法解题方法的讲解,相信可以很好的帮助同学们的学习工作,希望同学们认真学习,并很好的做好备战考试的工作。

数学解题方法3

  1.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:

  由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。

  2、“定四边形面积的求解”问题:

  有两种常见解决的方案:

  方案(一):连接一条对角线,分成两个三角形面积之和;

  方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的`和(差)

  3.“两个三角形相似”的问题:

  4.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:

  首先弄清题中是否规定了哪个点为等腰三角形的顶点。(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。

数学解题方法4

  1高中数学解题技巧归纳与总结

  ①背例题:首先背例题的主要原因就是能够在考场上遗忘了一些重要公式的时候,可以用题来套公式,这样可以更好的帮助你理解试题,更好的解决试题中遇到的问题。

  ②课前预习:很多人可能觉着课前预习对于巧妙解题并没有什么影响,实则不然,课前预习主要是让你了解课内出现的一些知识,自然就会有更多的方法来解答自己不会的'题目啦。

  ③背基础:基础知识永远是解题过程中遇到的最多的,所以背诵基础知识能够帮助你更好的理解试题。

  ④综合理解逐一突破:简单来讲就是由简到难,很多试题都是用简单的公式来变换,这也要求学生们能够举一反三,这样才能更好的解决问题。

  2高中数学解题技巧主要有以下几种方法

  1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

  2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

  3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。

数学解题方法5

  1.仔细审题争取“一遍成”

  拿到试卷后,先要通览,摸透题情。一是看题量多少,有无印刷问题;二是对通篇试卷的难易做粗略的了解。

  审题要逐字逐句搞清题意,似曾相识的题目更要注意异同,从多层面挖掘隐含条件及条件间内在联系。吃透题意,例如:“两圆相切”,就包括外切和内切,缺一不可。

  中考的考题是由易到难,顺利解答几个简单题目,可以使考生信心倍增。从近年来中考数学卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。

  2.遇到难题要敢于暂时“放弃”

  遇到难题要敢于暂时“放弃”,不要浪费太多时间。

  一般来说,选择题和填空题,优秀考生答每道题的时间不超过40秒,差一点的考生不超过2分钟。把会做的题目解答完后,再回头集中精力解决难题。在答题时要合理安排时间,不要在某个卡住的题上打“持久战”。

  3.电脑阅卷书写要工整

  卷面书写既要速度快,又要整洁、准确。电脑阅卷要求考生填涂答题卡准确,字迹工整,大题步骤明晰。

  草稿纸书写要有规划,便于回头检查。不少计算题的失误,都是因为书写太潦草。正确的做法是:在答题卡上列出详细的步骤,不要跳步。只有少量数学运算才用草稿纸。

  事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。

  4.三大方法答选择题

  答选择题可用三大方法。

  排除法:根据题设和有关知识,排除明显不正确选项。

  特殊值法:根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件。

  猜想、测量的方法:直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题。

  5.直接法和图解法答填空题

  直接法和图解法是填空题的基本解法。

  直接法:根据题干所给条件,直接计算、推理,得出正确答案。

  图解法:根据题干提供信息,绘出图形,从而得出正确的'答案。

  填空题虽然多是中低档题,但不少考生在答题时往往出现失误。首先,应按题干的要求填空,如一些附加条件,如精确到哪一位,有无单位。再者应认真分析题目的隐含条件。填空题不要求写出解题过程,填错、部分填对都将计零分。

  6.注意大题解题过程

  靠准确完整的数学语言表述,才能避免出现“会而不对”“对而不全”的情况。代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分会少得可怜。“心中有数”却说不清楚,扣分者也不在少数。

  最后几题要注意这些点:化简正确、体现三角函数值、代值过程、画图题是否画在格点上、画向量注意方向、证明步骤一定完整、用到三角函数一定准确、分析好图表、关键性步骤不能缺少、注意有无相等关系、注意等腰的分类、相似的分类等。

数学解题方法6

  随着20xx年考研数学大纲的出炉,考生考研数学的复习也进入了关键阶段,考研数学教研室为了帮助大家更好的备考,在此对高等数学中考查综合性强,所占比重最大的部分积分进行重难点分析并介绍基本的解题方法和思路。

  积分是高等数学中的一种重要运算,主要可以分为一元函数积分和多元函数积分两大类。其中,多元函数积分学又包含二重积分、三重积分以及积分的应用等。一元函数积分是整个积分的基础,主要包括不定积分、定积分、变限积分和反常积分等几类常用的积分。其中,不定积分又是基础中的基础,所有积分的计算从方法上最终都会追溯到不定积分的计算方法上去。所以在考试中这部分计算的考查当然是必不可少的,相关的计算方法如分部积分法、换元积分法等也都是考生在做题时常常会用到的。关于这些方法,考生不仅要能够熟练运用,更重要的是要知道它们的适用情况,多加练习才能在考试中灵活处理。定积分的地位也很重要,除了计算之外,定积分的性质、积分中值定理都是常考点,特别要强调的是定积分的应用,涉及到应用就需要考生对概念有一定的理解,能够从实际问题中抽象出数学模型进行求解,所以,应用这一部分着重强调大家对概念的理解和把握。剩余两类常见积分中,变上限积分常常与导数一起进行考查,反常积分可以看成是对变限积分取极限。所以,总的来说这部分知识难度不大,复习时考生需要在理解的基础上多加练习。

  多元函数积分中,二重积分对数一、数二、数三都有要求。这部分的计算要求考生会交换积分次序、灵活使用直角坐标系和极坐标系及两者之间的转换求解积分。此外,计算时要注意使用对称性、奇偶性等性质简化运算。三重积分、两种曲线积分、两种曲面积分以及积分的物理学应用等只对数一的考生有要求,对数二、数三的考生是不要求的,这一点在大纲上有明确的说明。三重积分是二重积分的'一个引申,从几何意义上讲,它将平面上的积分发展到了空间上的积分,因此通常与向量和空间解析几何这部分知识联系起来考查。主要有三种常用的计算方法:直角坐标系中的先一后二与先二后一法、柱坐标解法和球坐标法。在应用这三种方法解题时,考生一定要能够画出积分区域、掌握各个公式中参数的意义及取值范围,能够知道在何种情况下选择哪种方法进行解题,方法的选择不仅直接影响考生解题的速度、效率,甚至决定了能否计算出最终的结果。因此,相对来说这部分难度较大,考生往往得分较低,在考试中对学生的区分度大,数一考生在复习时应注意多思考、多总结。

  以上就是我们高等数学积分部分的重难点及基本解题方法,可以看出这部分考查的知识点相对来说还是比较多的,在考研数学中也占据了非常重要的地位。其实积分不仅影响考生高等数学的成绩,对概率论学科成绩也有影响,因为概率论中很大一部分题目的求解是以积分为工具的。因此,学好这部分内容,不仅仅是高等数学取得高分所必须的,更是考研数学取得高分所必须的。所以考生一定要引起足够的重视。

  大纲就是考研的指南针,有了复习的方向,再往深往宽了去拓展,才能真正掌握考研知识。考研在此祝愿各位考研学子都能名题金榜,笑傲考研。

数学解题方法7

  备考方法

  大胆取舍――确保中考数学相对高分

  “有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。”针对中考数学如何备考,著名数学特级老师说,这几个月的备考一定要有选择。

  “首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,一定要立足于基础和难易度适中,太难的可以放弃。在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的`题认真做一做,把根本没有感觉的难题放弃不做。千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精力。”

  做到基本知识不丢一分

  某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。

  “首先要梳理知识网络,思路清晰知己知彼。思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。”他说,“其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。根据考纲和自己的实际情况来侧重复习,也能提高有限时间的利用效率。”

  做好中考数学的最后冲刺

  广州中考研究中心老师表示,距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。

  压轴题坚持每天一道,并及时总结方法,错题本就发挥作用了。最后每周练习一套中考模拟卷,及时总结考试问题。我们做题的原则是先搞懂搞透错题,再做新题。如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。

  中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。最后要明白决定中考成败的不是压轴题而是简单题,千万不要在难题上不舍得,做到会做的题不丢分就好,这就需要你平时做题专注用心。

  平时养成好的答题习惯

  练兵千日,用在一时,关于中考应考技巧有几点做法:解题习惯要端正,由于是电脑阅卷,所以平时答题时就养成左对齐按列写的答题习惯;阅题习惯的养成,中考都会提前发卷,考生可利用这段时间,将试卷浏览一遍,大致了解题量、题型,了解试题的难易度,做到心中有数,通览全卷,把握全局。答题习惯上,先易后难,合理支配答题时间。进入考场后考生特别紧张,可轻拍几下额头,做几个深呼吸,紧张的情绪就会得到缓解。

数学解题方法8

  数学学习有自身的规律,许多数学问题的解决方法也是有规律可寻的。作为学业考试,主要考查学生对初中数学中的一些基本概念、基本方法的掌握,也即主要考查一些数学的通性通法,因此平时切忌不动脑筋,靠“多”做题目,达到掌握的目的。多做题目固然有好处,可以做到见多识广,但由于学生学习的时间是个有限的常数,而且在这有限的时间内还要学习其他许多知识,因此单靠盲目地多做练习,达到熟能生巧的程度,看来这条路是行不通的,我们要考虑的是如何提高学习的效率,为此我们一定要注意经常整理解决常见问题的基本方法。比如对于几何的证明题,我们要学会用分析的方法来思考问题:

  已知,AD是△ABC的角平分线,BD是BE与BA的比例中项,求证:AD是AE与AC的比例中项。

  分析:根据已知条件可以知道,BD2=BE·BA,进一步可以证得△BDE∽△BAD,得到一些对应角相等。而要证明AD是AE与AC的比例中项,即要证明AD2=AE·AC。要证明等积式,就是要证明比例式AEAD=ADAC。要证明比例式,可以考虑利用平行线分线段成比例定理或利用相似三角形的性质。根据本题的条件,就是要证明这四条线段所在的三角形相似,即△ADE∽△ACD。证明三角形相似需要两个条件,由于∠DAE=∠CAD,因此只需再找一对角相等或夹这个角的两边对应成比例,首先考虑的是证明两个角相等,不行时再考虑证明夹这个角的两边对应成比例,如∠AED=∠ADC。结合条件,可以证出∠BED=∠BDA,所以就可得到∠AED=∠ADC,从而证得结果。

  像这种思考问题的方法,隐含着数学的化归思想。在熟练掌握数学基本概念的前提下,解决较难问题时,我们经常采用把问题逐步转化成我们熟悉的、已经解决的问题,最终解决新的问题。因此我们要经常总结一些常见问题所采用的常见办法,如证明两个角相等,常见的有哪些方法?证明两条边相等,常见的有哪些方法?如何证明直线与圆相切?如何求函数的解析式?二次函数的图象与x轴的交点的横坐标与相应的一元二次方程的根有什么关系?等等。然后再通过适量的练习,达到熟练掌握方法的.目的。

  数学思想是数学的精髓,对数学思想方法的考查是中考的一个重要方面。因此在数学学习中要充分注重对数学思想的理解。除了上面提到的化归思想外,初中数学中,我们还学习过字母表示数思想、方程思想、函数思想、分解组合思想、数形结合思想、分类讨论思想、配方法、换元法、待定系数法等等。从数学思想方法上来认识解决问题的方法,那么就更能提高自己的能力。

  最后,学生还要注意改善学习方式,提高学习效率。学生一般都有这样一个习惯,考试结束后,或者作业做完后喜欢交流答案,这表明学生急需想知道自己的劳动成果,这是一件好事,但如果再进一步交流一下解题的方法,学习效率会更高。因为数学题目是大量的,一般学生是做不完的,不少题目有许多不同的解法,比如两位学生的答案一致,但解决问题的方法可能不一样,可能一种是一般的基本的方法,而另一种是根据这个问题的特征采用的特殊的方法,各有千秋,通过交流,取长补短,那么就能共同提高,从而也提高了自己的学习效率。

数学解题方法9

  1、配方法

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

  因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的.提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

  我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理一元二次方程根的判别。

  不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以讨论二次方程根的符号,解对称方程组,都有非常广泛的应用。5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

数学解题方法10

  逻辑推理

  例1 从代号为A、B、C、D、E、F六名刑警中挑选若干人执行任务。人选配备要求:

  (1)A、B两人中至少去1人;

  (2)A、D不能一起去;

  (3)A、E、F三人中派2人去;

  (4)B、C两人都去或都不去;

  (5)C、D两人中去1人;

  (6)若D不去,则E也不去。

  应派谁去?为什么?

  可这样思考:由条件(1),

  假设A去B不去,由(2)知D不去,由(5)知C一定去。这样,则与条件(4)B、C两人都去或都不去矛盾。

  假设A、B都去,由(2)知D不去,由(5)知C一定去,由(6)知E不去,由(3)知F一定去。无矛盾,(4)也符合。

  故应由A、B、C、F四人去。

  例2 河边有四只船,一个船夫,每只船上标有该船到达对岸所需的时间。如果船夫一次划两只船过河,按花费时间多的那只船计算,全部划到对岸至少要用几分钟?

  至少要用2+1+10+2+2=17(分钟)

  例3甲、乙、丙三人和三只熊A、B、C同时来到一条河的南岸,都要到北岸去。现在只有一条船,船上只能载两个人或两只熊或一个人加一只熊,不管什么情况,只要熊比人数多,熊就会把人吃掉。人中只有甲,熊中只有A会划船,问怎样才能安全渡河?

  这里只给出一种推理方法:

  枚举法

  把问题分为既不重复,也不遗漏的有限种情况,一一列举问题的解答,最后达到解决整个问题的目的。

  例4 公社每个村准备安装自动电话。负责电话编码的雅琴师傅只用了1、2、3三个数字,排列了所有不相同的三位数作电话号码,每个村刚好一个,这个公社有多少个村?

  运用枚举法可以很快地排出如下27个电话号码:

  所以该公社有 27(3×9)个村。

  例5 国小学数学奥林匹克,第二次(1980年12月)3题:一个盒中装有7枚硬币:2枚1分的,2枚5分的,2枚10分的,1枚25分的。每次取出两枚,记下它们的`和,然后放回盒中,如此反复。那么记下的和至多有多少种不同的数?

  枚举出两枚硬币搭配的所有情况

  共有9种可能的和。

数学解题方法11

  填空题是一种只要求写出结果,不要求写出解答过程的客观性,是中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题 高考. 这说明了填空题是命题改革的试验田,创新型的填空题将会不断出现. 数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫.常用的有直接法、特殊化法、数行结合法、等价转化法等.

  一、直接法

  这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等,通过变形、推理、运算等过程,直接得到结果.

  女生如何学好高中数学 6招提高成绩

  大量事实和调查数据表明,随着内容的.逐步深化,女生逐渐下降,他们越学越用功,却越学越吃力,出现了部分女生严重偏科的现象。因而,对女生的培养应引起重视。

  一、“弃重求轻”,培养

  女生数学能力的下降,环境因素及因素不容忽视。目前社会、家庭、学校对的期望值普遍过高。而女生性格较为文静、内向,承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降。因此,要多关心女生的思想和学习,经常同她们平等交谈,了解其思想上、学习上存在的问题,帮助其分析原因,制定,清除紧张,鼓励她们“敢问”、&ldquo 高中英语;会问”,激发其学习兴趣。同时,要求能以积极态度对待女生的数学学习,要多鼓励少指责,帮助她们弃掉沉重的思想包袱,轻松愉快地投入到数学学习中;还可以结合女性成才的事例和现实生活中的实例,帮助她们树立学好数学的信心。事实上,女生的情感平稳度比较高,只要她们感兴趣,就会克服困难,努力达到提高数学能力的目的。

  二、“开门造车”,注重

  在方面,女生比较注重基础,学习较扎实,喜欢做基础题,但解综合题的能力较差,更不愿解难题;女生上课记笔记,时喜欢看课本和笔记,但忽视上课听讲和能力训练;女生注重条理化和规范化,按部就班,但适应性和创新意识较差。因此,教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人的经验,改进,逐步提高能力。

  三、“笨鸟先飞”,强化

  女生受生理、心理等因素影响,对的理解、应用能力相对要差一些,对问题的反应速度也慢一些。因此,要提高学习过程中的数学能力,课前的预习至关重要。教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。因此,要求女生强化课前预习,“笨鸟先飞”。

  四、“固本扶元”,落实“双基”

  女生数学能力差,主要表现在对基本技能的理解、掌握和应用上。只有在巩固基础知识和掌握基本技能的前提下,才能提高女生的综合能力。因此,教师要加强对旧知识的复习和基本技能的训练,结合讲授新课组织复习;也可以通过基础知识的训练,使学生对已学的知识进行巩固和提高,使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用。

  五、“扬长补短”,增加自信

  在数学学习过程中,女生在运算能力方面,规范性强,准确率高,但运算速度偏慢、技巧性不强;在逻辑能力方面,善于直接推理、条理性强,但间接推理欠缺、方式单一;在空间想象能力方面,直觉敏捷、表达准确,但线面关系含混、作图能力差;在应用能力方面,“解模”能力较强,但“建模”能力偏差。因此,教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的勇气和战胜困难的决心。特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要“由因导果”,也要“执果索因”,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养;揭示实际问题的空间形式和数量关系,培养“建模”能力。

  六、“举一反三”,提高能力

  “上课能听懂,作业能完成,就是成绩提不高。”这是高中阶段女生共同的“心声”。由于课堂信息容量小,知识单一,在的指导下,女生一般能听懂;课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,她们能完成。但因速度和时间等方面的影响,她们不大注重课后的理解掌握和能力提高。因此,教学中要编制“套题”(知识性,技能性)、“类题”(基础类,综合类,方法类)、“变式题”(变条件,变结论,变思想,变方法),并对其中具有代表性的问题进行详尽的剖析,起到“举一反三”、“触类旁通”的作用,这有利于提高女生的数学能力。

数学解题方法12

  1、简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

  2、解题步骤:

  a.审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

  也可以复述条件和问题,帮助理解题意。

  b.选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,

  联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

  c.检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

  d.答案:根据计算的结果,先口答,逐步过渡到笔答。

  3、解答加法应用题:

  a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

  b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

  4、解答减法应用题:

  a.求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

  b.求两个数相差的多少的.应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

  c.求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

  5、解答乘法应用题:

  a.求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

  b.求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

  6、解答除法应用题:

  a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

  b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

  c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

  d.已知一个数的几倍是多少,求这个数的应用题。

数学解题方法13

  提高解数学综合性问题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的同学来说,是一道生命线,往往成也萧何败也萧何;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。

  1.综合题在高考试卷中的位置与作用:

  数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。

  2.解综合性问题的三字诀:

  三性:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好三性,即:

  (1)目的性:明确解题结果的终极目标和每一步骤分项目标。

  (2)准确性:提高概念把握的准确性和运算的准确性。

  (3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。

  三化:

  (1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。

  (2)问题简单化。即把综合问题分解为与各相关知识相联系的简单问题,把复杂的形式转化为简单的形式。

  (3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。

  三转:

  (1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。

  (2)概念转换能力:综合题的转译常常需要较强的数学概念的'转换能力。

  (3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。

  三思:

  (1)思路:由于综合题具有知识容量大,解题方法多,因此,审题时应考虑多种解题思路。

  (2)思想:高考综合题的设置往往会突显考查数学思想方法,解题时应注意数学思想方法的运用。

  (3)思辩:即在解综合题时注意思路的选择和运算方法的选择。

  三联:

  (1)联系相关知识,(2)连接相似问题,(2)联想类似方法。

  3.对平时综合练习的反思:

  平时做完综合练习后,要注重反思这一环节,注意方法的优化。要把解题的过程抽象形成思维模块,注意方法的迁移和问题的拓展。再最后的自由复习阶段也可选取部分做过的综合卷中的压轴题进行反思,主要研究:审题分析的过程(如:寻求条件与结论联系,与基础知识的联系,与平时基本方法的联系)、隐含条件的运用、计算方法及准确性。

数学解题方法14

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的.差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

数学解题方法15

  待定系数法类型的解题方法,同学们还熟悉吧,下面我们来学习。

  待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的'形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  以上对于待定系数法解题方法的讲解,相信可以很好的帮助同学们对数学题目的解答,同学们也要努力学习。

【数学解题方】相关文章:

数学解题方法11-28

【精选】数学解题方法11-28

(热门)数学解题方法15篇11-28

中考数学的实用解题技巧02-01

高一数学解题套路分享03-11

中考数学解题技巧与压轴题的解法04-12

看我解题绝招作文05-06

高一数学关于几何中求参数取值范围的解题技巧03-15

培养学生良好的解题习惯03-22

中考科学的解题技巧05-17