- 相关推荐
【精选】数学解题方法
数学解题方法1
待定系数法类型的解题方法,同学们还熟悉吧,下面我们来学习。

待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的`系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
以上对于待定系数法解题方法的讲解,相信可以很好的帮助同学们对数学题目的解答,同学们也要努力学习。
数学解题方法2
【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的.关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
【解题思路和方法】 变通后可以利用上述数量关系的公式。
例题答案
例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
答:两队合做需要6天完成。
例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
答:这批零件共有168个。
例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
答:还需要5小时才能完成。
例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
答:至少需要9个进水管。
数学解题方法3
初中数学10种解题方法之待定系数法
待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的`方法之一。
初中数学10种解题方法之待定系数法,相信大家看过后可以做好笔记并灵活运用了吧。接下来还有更多的初中数学讯息尽在哦。
数学解题方法4
第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。
因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。
因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。
第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如20xx年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。
再如数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。
如第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
在判定函数的`单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。
数学解题方法5
解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面。
一、审题规范
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。
目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。
(3)确定解题思路。一个题目的'条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
二、语言叙述规范
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。因此,语言叙述必须规范。规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。
三、答案规范
答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整。要做到答案规范,就必须审清题目的目标,按目标作答。
四、解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾节思考,只有这样,才能有效的深化对知识的理解,提高思维能力。
(1)有时多次受阻而后“灵感”突来。不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。
(2)这些方法的熟练程度密切相关,学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力。
数学解题方法6
1、简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
2、解题步骤:
a.审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b.选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,
联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
c.检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
d.答案:根据计算的结果,先口答,逐步过渡到笔答。
3、解答加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
4、解答减法应用题:
a.求剩余的应用题:从已知数中去掉一部分,求剩下的'部分。
b.求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c.求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。
5、解答乘法应用题:
a.求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b.求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
6、解答除法应用题:
a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d.已知一个数的几倍是多少,求这个数的应用题。
数学解题方法7
高分数学解题方法1:调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
高分数学解题方法2:沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
高分数学解题方法3:“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
高分数学解题方法4:一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
高分数学解题方法5:“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
4.先小后大
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗
5.先点后面
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面
6.先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
高分数学解题方法6:确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
高分数学解题方法7:讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
高分数学解题方法8:面对难题,讲究方法,争取得分
会做的`题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
高分数学解题方法9:以退求进,立足特殊
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
高分数学解题方法10:应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
高分数学解题方法11:执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
高分数学解题方法12:回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
数学解题方法8
甲、乙两列火车的速度比是5:4,乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
解析:
利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米
利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米。
甲放学回家需走10分钟,乙放学回家需走14分钟。已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的'路程是几米?
解析:
如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;
而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。
所以,这120米就是乙路程的2/7-1/7=1/7;
乙回家的路程为:120/(1/7)=840米。
两种基本的方法
方法一:
乙行甲那么远的路,就要14÷(1+1/6)=12分钟
所以甲回家有12÷(1/10-1/12)=720米
所以乙回家的路程是720×(1+1/6)=840米
方法二:
甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟
所以乙回家的路程是12÷(3/35-1/14)=840米
数学解题方法9
我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!
华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:
有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。
聪明的'小读者,想想看,他们是怎么知道帽子颜色的呢?“
为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。
这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。
看到这里。同学们可能会拍手称妙吧。后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。
数学解题方法10
中考是通过解题来判断学生数学能力的,中考复习的最终成果要落实到解题能力的提高上来。解题训练要做到“举一反三,熟练运用”,但不能盲目地、无目的地、重复地、无选择地强化训练,采取题海战术只能事倍功半。
(1)以中档综合题为训练重点。
①中档综合题区分度好,训练价值高,教师讲得清楚,学生听得明白,有利于学生数学素质的提高。
②中下档题目是考生得分的主要来源,是进一步去解高档题的基础。
③高档题要有,但要控制数量,重在讲清“怎样解”,从何处下手、向何方前进。
(2)以近年中考题和各区县中考模拟考题为基本素材。
①中考试题或模拟考题经过考生的'实践检验和广大教师的深入研讨,科学性强(漏洞也清楚),解题思路明朗,解题书写规范,评分标准清晰,是优质的训练素材。
②中考试题或模拟考题都努力抓课程的重点内容和重要方法,并且每套中考试题或模拟考题能覆盖全部知识点的60%~80%,几套试题一交*,既保证了全面覆盖,又体现了重点突出。
③近年中考试题或模拟考题能反映命题风格、命题热点、命题形式(特别是新题型)的新动向、新导向,以近年中考题为基本素材,有利于考生适应中考情境,提高中考复习的针对性。中考题型的创新形式主要有:情景题、应用题、开放题、操作题、探索题等,体现出“经历、体验、探索”的过程性目标,表现为情景性、应用性、开放性、过程性、探究性。
(3)以提高解题准确和速度为突破口。
中考要在100分钟完成25道题,30多问,题量是比较多的,而且有大量实际情况、或过程呈现的叙述,阅读量又是比较大的。怎样提高学生的解题速度呢?由熟到快——原则性建议是:
①深刻理解基础知识,熟练掌握基本方法,努力形成基本技能。
②合理安排考试时间,书写做到数学语言是通用、精确、简约的科学语言。
③平时进行速度训练。以此来加快书写速度,降低思维难度,提高解题质量。
数学解题方法11
高考数学解题方法与经验
【雷区和得分技巧】
无谓失误1:计算出错
计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。“在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。一句话:不是不会做,而是计算错!”
在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。事实上,解方程或方程组时将所求出来的解代入到原方程或方程组进行检验即可发现正确与否,解不等式或不等式组则可以考虑用解集区间端点或一些特殊值进行检验。
无谓失误2:答题不规范
高考数学解答题明确要求考生写出文字说明、证明过程和演算步骤。考生们必须明白,做一道解答题实际是在写一篇数学作文!必须要把解答的思维过程无声地展示给评卷人员,而不是把一堆数学式子和数学符号写在试卷上即可。很多考生的文字说明词不达意,证明过程条件不明显、推理不到位、演算步骤详略不当、卷面不整洁。有些考生则是文字表述思路不清,令人费解,评卷老师需要猜测其解题意图。
千万不要触碰高考答题要求的“红线”:必须在指定答题区域内书写相应题号的解答。有些考生将部分解答内容写在指定的区域之外,甚至有一些考生更改答题卡的题号,如在18题答题区域上将“18”涂改成“19”并将19题解答写在这个区域上,这些都会被作零分处理。
无谓失误3:答非所选
填空题同样是考生“无谓失分”较多的。一些考生做填空题时答非所选,即答题卡所选择的题目与实际做的题目不一致,但评卷时是根据所选题目进行评判的,当然不给分。
此外,考生给出的结果不规范也易失分。比如答案是一个计算出来的具体数字,但考生只是给出了中间一步还没有算完的式子等等。
不同分数段的学生有不同的提分窍门
1、60分考生赶紧去啃公式
对于做历年试题、模考题能考60分,目标分数是90分的同学来说,梳理知识点很关键,因为考60分说明知识点没掌握好。数学科目中固定的公式其实没有同学们想象得那么多,一口气背下来,做题就会顺利很多。
2、80—90分奔120+的考生要总结常考题型
那些现在能考十分,努力要拿下120分的同学,一般缺乏的是知识框架和条理。考生可把数学大题的每一道题作为一个章节,自己或者找老师把每章节的知识脉络捋顺。在这个基础上,再试着总结每道大题常考的几种题型。例如,数列题基本上第一问求通项公式(记住求通项公式常用的几种办法),第二问求前N项和(通常裂项相消或错位相减)或者数列的证明(包括不等式证明)。这样做题的时候大部分的内容就都了然于胸。只是要符合总结的框架套路的题,都是可以直接秒刷的,所花费的时间是用来计算、写字的。能做到这样,120分就不在话下了。
其实要拿到120分并不难,只要分配好各种题型的丢分就可以了。选择加填空最多错3个,这个可以通过训练达到,因为大部分的题都是固定的。一般来说,有集合的题(称之为“简单送分的)、向量的题(送分的)、充分必要条件的题(送分的)、复数的题(送分的),立体几何三视图还原求体积表面积的题(经过训练就是送分的),有的省份还有线性规划的题(经过训练也是送分的)。当你总结出题目的出题策略时,答题就变得很简单了。
关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。至于解析几何,按照套路去写,有的题写着写着就有思路了。导数如果想出难题也可以非常难,但想拿满分也是很困难的。所以建议同学这两道题上可以丢一些分。总结下来,小题部分,15分可以丢;大题部分,丢分尽量控制在15分的范围内。
3、120+奔140+的考生要减少总体失分
分数达到120+的同学,知识框架应该有了,做题的套路也有一些了。那么怎么提高?可以从上述丢分的地方抢分,把选填的分数拿到,把标准提高到最多错一个;大题部分就在丢分那两道题里再找提高的空间。考生要注意,这个时候前4道大题基本是不可再丢分的,否则就永远陷在120+的循环里出不来,最后都不知道该补哪一块了。
4、140+奔150的同学要转移复习中心
现在数学140+,努力奔向150的同学们,只有一个建议——好好学英语、语文或其他科目去吧,你们的提升空间不在数学上。
数学:和试卷抢分也是有技巧的
第一,高考数学评卷的主观性很少,评分细则都是细分到每一分。对于第三类难题虽然不会做,但只要解答符合给分点,也可以得分。如用向量法解决立体几何问题时(注意:有时不用向量法更简单)能正确建立坐标系,计算出关键点的坐标都可以得分;利用导数求函数的单调性问题,只要写出正确的定义域也可以得分;三角函数和概率统计题能正确写出相关的公式也可以得分等等。所以,碰到难题不要怕,会多少就写多少。
第二,正确理解“做对”与“做快”的关系。数学高考首先将准确性放在第一位,不能一味追求速度或技巧。狠抓基础题,先小题后大题,限度减少失误,尽可能把会做的题都做对、做完,这是考好数学的重要法宝。
第三,考试结束前几分钟,切记不要草率地把怀疑做错的大题解答过程从答卷上涂掉(因为不存在倒扣分的问题),此时如果还有题目没做,可以直接把你的分析过程写在答卷上,不要打草稿了。
【填空题解题方法】
一、直接法
从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊化法
当填空题的结论或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
三、数形结合法
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法
将问题等价地转化成便于解决的问题,从而得出正确的结果。
解决恒成立问题通常可以利用分离变量转化为最值的方法求解。
【解析几何解题方法】
1、将圆锥曲线几何性质与向量数量积、不等式等交汇是高考解析几何命题的一种新常态,问题解决过程中渗透数学的转化化归,函数与方程和数形结合等的数学思想方法。
2、点差法是一种常用的模式化解题方法,这种方法对于解决有关斜率,中点等问题有较好的解题效能。
3、圆及其直线与圆的位置关系,轨迹等问题是全国I卷的`常考点,点到直线的距离、弦长公式,圆的几何性质,解三角形等知识点交汇融合,数形结合、分类讨论等数学思想方法有机渗透,解法常规,思路清晰。
4、直线与圆锥曲线的位置关系在虽然没有明确指出,但是在高考则是常考不衰的考点,同时常常与不等式、最值等相交汇,题型常见,理解容易,思路明确,交汇点较多。直线与圆锥曲线位置关系解法步骤直接明了,关键计算(解方程、求最值等)是否准确,规范是否到位,细节是否。
5、抛物线的切线及其性质,存在性的问题
都是高考的常考点,将求证目标 ∠OPM=∠OPN 转化为 k1+k2=0 是解题的关键,体现转化化归思想的应用,同时利用设而不求实现整体化简是减少计算量的有效方法,应当熟练掌握。
6、“定义型”的试题是高考的一个热点。这种题目设问新颖,层次分明,贯穿解析几何的核心内容,解题的思路和策略常规常见,通性通法,直线与圆锥曲线的位置关系的解法和基本在此呈现,正确快速的多字母化简计算是解析几何解题的一道坎。
高考数学解题思想
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:
(1)对于所求的未知量,先设法构思一个与它有关的变量;
(2)确认这变量通过无限过程的结果就是所求的未知量;
(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论
常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
数学解题方法12
数学试卷答得好坏,主要依靠平日的基本功。只要“双基”扎实,临场不乱,重审题、重思考、轻定势,那么成绩不会差。切忌慌乱,同时也不可盲目轻敌,觉得自己平时数学成绩不错,再看到头几道题简单,就欣喜若狂,导致“大意失荆州”。不是审题有误就是数据计算错误,这也是考试发挥失常的一个重要原因,要认真对待考试,认真对待每一道题主要把好4个关:
1、把好计算的准确关。
2、把好理解审题关“宁可多审三分,不抢答题一秒”。
3、把好表达规范关。
4、把好思维、书写同步关。
一、对题目的书写要清晰:
做到稳中有快,准中有快,且快而不乱。要提高答题速度,除了上述的审题能力、应答能力外,还要提高书写能力,这个能力不仅是写字快,还要写得规范,写得符合要求。比如,填空题的内容写在给定的横线上,改正错误时,要擦去错误重新再写,不要乱涂乱改;计算题要把解写上,证明题要把证明两字写上,内容从上到下、从左到右整齐有序,过程清楚;尤其几何题要一个步骤一行,步骤要详细,切不可跳步。作图题用铅笔作答等。答题时不注意书写的'清晰,字迹潦草到看不清楚的地步,乱涂乱改的结果使卷面很不整洁,在教师阅卷时容易造成误解扣分。
二、对未见过的题目要充满信心:
在每门课的中考中,遇到一至几道未见过的,不会做的难题,这是正常现象;反之,如果一门课的题目,大家都会做,甚至都觉得很容易,这份考题就出糟了,它无法实现合理的区分度,。因此,考题中,若没有一些大家末曾见过的"难题",反而是不正常了不慌不躁,冷静应对在考试时难免有些题目一时想不出,千万不要钻牛角尖,因为所有试题包含的知识、能力要求都在考纲范围内,不妨先换一个题目做做,等一会儿往往就会豁然开朗了。综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。
三、图形添线,必有规律
这几年考试中,几何图形的辅助线集中在四方面:
1、如果图形中有特殊点,如切点,斜边的中点,就要连结特殊线段,如经过切点的半径、斜边上的中线,等等;
2、作垂线,构成直角三角形,便于计算;
3、分割四边形,或延长一组对边,或平移线段,把四边形转化为三角形来研究。
4、平行线
数学解题方法13
"瞻前顾后"出自《楚辞.离骚》,含义是看看前面,又看看后面。形容考虑或处理事情谨慎周到。
解答数学题时,很多同学只追求"做出来",有了一个答案便不再深入思考,缺乏"瞻前顾后"的良好习惯,从而忽略了另外的.可能性。
例题:甲、乙两车同时从A、B两地相向开出,甲车每小时行45千米,乙车每小时行55千米,4小时后两车相距20千米。求A、B两地的距离。
分析与解:这是一道比较简单的行程问题,大多数同学可能这样列式计算:(45+55)×4+20=420(千米)。其实很多同学在解题时忽视了另一种情况:如果两车行驶了4小时已经相遇,并且一共又多行了20千米,那么两地的距离就应该是两车4小时所行的路程再减去20千米。因此,还可以这样列式计算:(45+55)×4-20=380(千米)。这道题存在两种可能性所以答案不是唯一的。
数学解题方法14
初中数学做题技巧一:先易后难
逐步增加题目难度人们认识事物都是从易到难,从简单到复杂,那么数学做题也是一样的,如果同学们一开始做题就挑那种难度比较大的题目来做,那么这自然会打击同学们的做题热情,也会打击同学们的自信心。所以如果同学们想要让自己保持一个良好的做题心态,那么就应该从简单的题目开始做起,一点点的增加做题难度,这样做题,同学们心理比较容易接受一些。
初中数学做题技巧二:仔细、认真审题
对于一道具体的数学题目,最重要的解题步骤就是审题,通过审题,同学们能够获取题目的出题意旨,通过题目的`意旨,同学们就可以按照指示一步步来完成题目需要我们解答的问题。同学在审数学题目的时候要注意找出已知条件,未知条件,隐含条件,通过已知条件推算出题目答案,同学们做数学题目一定要记住这一点:心急吃不了热豆腐,所以一定要一步一个脚印。
初中数学做题技巧三:熟悉数学教材中的定义、公式、定理
同学们做数学题的时候需要清楚一点,那就是不要为解题而解题,做数学题目是为了掌握数学知识的,比如数学教材中的概念、定理、公式等等。如果同学们能够利用这些来解答出数学题目,那么同学们就掌握了这些知识点,若是没能够掌握,那么在做题之前一定要先熟悉它们。
数学解题方法15
时间过得飞快,同学们一路踩着大大小小的测试,转眼就走到了年底。这个阶段,如何提高数学的解题能力,恐怕是大多数同学的心病。如何打开你们的心结,解放你们的时间呢?今天,我就给同学们传授一点数学的复习方法,帮助你们提高我们的数学解题能力。请那些急待数学成绩提高的同学做好笔记吧。
数学在命题方面千变万化,知识点又非常容易综合穿插,所以,对那些不擅长整合知识、对数学概念缺乏理解的同学来讲,难免会感到数学很难。进入11月之后,玖久办公室接到的咨询电话陆续多起来,一些外地的家长都在帮助孩子寻找数学的复习方法和解题思维,希望能够提高孩子的数学学习能力,早日让孩子的数学成绩发生变化。汇总了一下同学和家长的咨询内容,基本上,问题都集中在这上面:在数学学科上投入很大精力,很努力,但是到头来,只会做老师讲过的题。考试的时候,题型稍微一变,马上就答不上来,非常让人着急......
其实,数学是一个简单的学科,因为答案是唯一的',问题又非常明确,比其他学科都容易掌握,分数也更容易提高。那些认为数学难、遇到新题没思路、做了大量习题,收效却不大的同学其实还是没有抓到数学的学习窍门。从大的方面讲,是学生不懂得什么是学习?从小的方面讲,是学生缺乏数学学习胃口,没有数学思路。学习是让我们发现一种内在的存在方式,思路是连接知识与问题之间的过程。如果你清楚了解这点,你会非常轻松,也会非常有方向。然后,你就会像阿基米德一样,发现这个世界。
首先,你要培养三项能力:
这三项能力对于数学成绩的高低起着关键性的作用,即:
1、理解知识,知道知识是从哪里来的,要用到哪里去;
2、善于分析,一道题目,能够快速找到可以利用的条件,对应前面的恰当知识;
3、精于思维管理,思路灵活并且善于主动式思考,可以快速精准的解决问题。
在形容这个解题能力的时候,曹老师举个很恰当的例子:一道题,给出我们一些条件,又给出我们一个目标。但是在目标和条件之间,还有一些空,需要我们去填补,怎样填补?用我们解决问题的思想,将自己理解的知识点填充在空白处。好,这道题你就做的很漂亮。其实学习和工作一样,跟我们应对生活中的任何问题都一样。我们可以回想一下,在我们遇到问题的时候,我们是不是都会率先抓住问题的要害(善抓重点的人,问题都处理的高效精准。相反,都一盘散沙)?抓住要害就等于抓住了目标,为了达成这个目标,我们首先数数当前我们拥有什么有利条件,接下来创造一些条件,完成目标。在数学题中,题目就是目标;有利条件就是已知条件;创造条件,就是利用解决问题的思维,找到的知识点。如果这样去看待问题,你还认为数学抽象吗?我常常对学生讲:学习不应该很辛苦,坚持、努力、鞠躬尽瘁、呕心沥血这些词语都带有痛苦的成份,不是最佳的学习方式。学习的光明境界是,了之一种内在的存在形式,找到究竟。当我们了之知识存在的形式之后,我们会与他们轻松相应,我们认识每个知识,他们也认识我们,这样的相处才很愉快。
庄老师认为通过一定的方法训练数学思想,简化数学知识点的理解,数学知识是非常容易融汇贯通的。在解题思想上,通过不断寻找目标前提也就是必要性思维,是能够做到以不变应万变,大道无形。庄肃钦老师送给全国学生的数学感言数学,有着无穷的魅力!她具有音乐般的和谐、图画般的美丽、诗意般的境界;她赋予真理以生命,给我们思想增加光辉;她澄清智慧,涤尽有史以来的蒙昧和无知;平淡中见新奇,新奇中有艺术,这就是数学。我会和同学们一起,遨游数学之海洋、赏析数学之瑰丽、破解数学之谜题、享受数学之绝妙,在享受数学的道路上不断探索
其次,我们要有一套训练有素的数学复习标准步骤,下面就让我们循着通往数学满分的路,看看如何驾驭自己的思想走上数学高分的捷径。
【数学解题方】相关文章:
数学解题方法11-28
(热门)数学解题方法15篇11-28
中考数学的实用解题技巧02-01
高一数学解题套路分享03-11
中考数学解题技巧与压轴题的解法04-12
看我解题绝招作文05-06
培养学生良好的解题习惯03-22
中考科学的解题技巧05-17
激情方特作文04-24