数学解题方

时间:2025-11-29 09:01:58 好文 我要投稿
  • 相关推荐

数学解题方法15篇【必备】

数学解题方法1

  解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面。

数学解题方法15篇【必备】

  一、审题规范

  审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。

  (1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。

  目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。

  (2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。

  (3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。

  二、语言叙述规范

  语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的'重要环节。因此,语言叙述必须规范。规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。

  三、答案规范

  答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整。要做到答案规范,就必须审清题目的目标,按目标作答。

  四、解题后的反思

  解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾节思考,只有这样,才能有效的深化对知识的理解,提高思维能力。

  (1)有时多次受阻而后“灵感”突来。不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。

  (2)这些方法的熟练程度密切相关,学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力。

数学解题方法2

  1.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:

  由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的.面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。

  2、“定四边形面积的求解”问题:

  有两种常见解决的方案:

  方案(一):连接一条对角线,分成两个三角形面积之和;

  方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)

  3.“两个三角形相似”的问题:

  4.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:

  首先弄清题中是否规定了哪个点为等腰三角形的顶点。(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。

数学解题方法3

  1.仔细审题争取“一遍成”

  拿到试卷后,先要通览,摸透题情。一是看题量多少,有无印刷问题;二是对通篇试卷的难易做粗略的了解。

  审题要逐字逐句搞清题意,似曾相识的题目更要注意异同,从多层面挖掘隐含条件及条件间内在联系。吃透题意,例如:“两圆相切”,就包括外切和内切,缺一不可。

  中考的考题是由易到难,顺利解答几个简单题目,可以使考生信心倍增。从近年来中考数学卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。

  2.遇到难题要敢于暂时“放弃”

  遇到难题要敢于暂时“放弃”,不要浪费太多时间。

  一般来说,选择题和填空题,优秀考生答每道题的时间不超过40秒,差一点的考生不超过2分钟。把会做的题目解答完后,再回头集中精力解决难题。在答题时要合理安排时间,不要在某个卡住的`题上打“持久战”。

  3.电脑阅卷书写要工整

  卷面书写既要速度快,又要整洁、准确。电脑阅卷要求考生填涂答题卡准确,字迹工整,大题步骤明晰。

  草稿纸书写要有规划,便于回头检查。不少计算题的失误,都是因为书写太潦草。正确的做法是:在答题卡上列出详细的步骤,不要跳步。只有少量数学运算才用草稿纸。

  事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。

  4.三大方法答选择题

  答选择题可用三大方法。

  排除法:根据题设和有关知识,排除明显不正确选项。

  特殊值法:根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件。

  猜想、测量的方法:直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题。

  5.直接法和图解法答填空题

  直接法和图解法是填空题的基本解法。

  直接法:根据题干所给条件,直接计算、推理,得出正确答案。

  图解法:根据题干提供信息,绘出图形,从而得出正确的答案。

  填空题虽然多是中低档题,但不少考生在答题时往往出现失误。首先,应按题干的要求填空,如一些附加条件,如精确到哪一位,有无单位。再者应认真分析题目的隐含条件。填空题不要求写出解题过程,填错、部分填对都将计零分。

  6.注意大题解题过程

  靠准确完整的数学语言表述,才能避免出现“会而不对”“对而不全”的情况。代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分会少得可怜。“心中有数”却说不清楚,扣分者也不在少数。

  最后几题要注意这些点:化简正确、体现三角函数值、代值过程、画图题是否画在格点上、画向量注意方向、证明步骤一定完整、用到三角函数一定准确、分析好图表、关键性步骤不能缺少、注意有无相等关系、注意等腰的分类、相似的分类等。

数学解题方法4

  "瞻前顾后"出自《楚辞.离骚》,含义是看看前面,又看看后面。形容考虑或处理事情谨慎周到。

  解答数学题时,很多同学只追求"做出来",有了一个答案便不再深入思考,缺乏"瞻前顾后"的良好习惯,从而忽略了另外的可能性。

  例题:甲、乙两车同时从A、B两地相向开出,甲车每小时行45千米,乙车每小时行55千米,4小时后两车相距20千米。求A、B两地的距离。

  分析与解:这是一道比较简单的行程问题,大多数同学可能这样列式计算:(45+55)×4+20=420(千米)。其实很多同学在解题时忽视了另一种情况:如果两车行驶了4小时已经相遇,并且一共又多行了20千米,那么两地的距离就应该是两车4小时所行的'路程再减去20千米。因此,还可以这样列式计算:(45+55)×4-20=380(千米)。这道题存在两种可能性所以答案不是唯一的。

数学解题方法5

  一、提前进入角色

  很多同学都有这样的习惯,每次刚刚考试完,会有很多遗憾,总想如果这次考试要是重新考的话,我会考得比较好。那么,要想在高考这一次考试中取得比较好的成绩,必须要少留遗憾,最正常的发挥,至于不会做的,或者根本做不出来的谈不上遗憾,就怕自己的水平没有发挥出来。

  提前进入角色应该特别关注以下两个问题:

  1、生活作息上的适当调整。

  首先,调整好自己的生物钟,不要熬夜,做题尽量放在白天与高考同步。其次,尽量保持与平时一致的`生活习惯,饮食上不要有太大的改变,避免肠胃不适。再次,要有积极的心理暗示。人的潜力有时候自己都难以相信,当你精力集中、心理暗示到一定程度,可以使自己超水平发挥的。

  2、高考前几天要在数学学科做好“保温”。

  有三点要注意:

  第一、分析订正错题,总结常见的几类错误。

  第二、分类看旧题,针对重点内容重点看。看看《考试说明》要求比较高的知识点,总结一下通性和通法,进行专项内容的总结和分类,形成解决这类问题的常见方法。

  第三、适当做一些新题。新题难度不要太大,中等或者偏下。中等可以保持你的斗志,偏下是为了保温。

  二、监考发卷后迅速摸清题情

  高考会提前五分钟发卷,这五分钟同学们不要答卷,先用一分钟填考试信息,接下来同学们就要尽快地摸清题情。

  1、识别试卷中曾做过的,会做的题。

  也要注意有没有可能会做,但是需要花大量的时间的题。心里要立刻有一个答题的顺序。

  2、舍得放弃,正确对待得与失。

  万一遇到某个题从来都没有见过,可以大概看看是哪个类型,用什么方法能解决,这个题目是考察什么,迅速决定是否放弃。如果觉得花两个小时也不一定能做出来,这个时候要舍得放弃,集中自己的精力,解决自己会做的问题,高考考得不是会多少,而是对多少。

  三、四先四后

  即先易后难、先熟后生、先高后低、先同后异。

  1、易与熟:涉及的概念公式方法能融会贯通,脱口而出,一目了然。这样的问题我们很快就能做出来,这就是先“易”和先“熟”。

  2、高:选择填空一步5分,相比大题按步骤给分,分数更高。

  3、同:三种(选择、填空、解答)。同一种类型的题,尽量放在同一个时间答。这当然也要具体问题具体分析。

数学解题方法6

  逻辑推理

  例1 从代号为A、B、C、D、E、F六名刑警中挑选若干人执行任务。人选配备要求:

  (1)A、B两人中至少去1人;

  (2)A、D不能一起去;

  (3)A、E、F三人中派2人去;

  (4)B、C两人都去或都不去;

  (5)C、D两人中去1人;

  (6)若D不去,则E也不去。

  应派谁去?为什么?

  可这样思考:由条件(1),

  假设A去B不去,由(2)知D不去,由(5)知C一定去。这样,则与条件(4)B、C两人都去或都不去矛盾。

  假设A、B都去,由(2)知D不去,由(5)知C一定去,由(6)知E不去,由(3)知F一定去。无矛盾,(4)也符合。

  故应由A、B、C、F四人去。

  例2 河边有四只船,一个船夫,每只船上标有该船到达对岸所需的时间。如果船夫一次划两只船过河,按花费时间多的那只船计算,全部划到对岸至少要用几分钟?

  至少要用2+1+10+2+2=17(分钟)

  例3甲、乙、丙三人和三只熊A、B、C同时来到一条河的南岸,都要到北岸去。现在只有一条船,船上只能载两个人或两只熊或一个人加一只熊,不管什么情况,只要熊比人数多,熊就会把人吃掉。人中只有甲,熊中只有A会划船,问怎样才能安全渡河?

  这里只给出一种推理方法:

  枚举法

  把问题分为既不重复,也不遗漏的有限种情况,一一列举问题的解答,最后达到解决整个问题的目的。

  例4 公社每个村准备安装自动电话。负责电话编码的雅琴师傅只用了1、2、3三个数字,排列了所有不相同的三位数作电话号码,每个村刚好一个,这个公社有多少个村?

  运用枚举法可以很快地排出如下27个电话号码:

  所以该公社有 27(3×9)个村。

  例5 国小学数学奥林匹克,第二次(1980年12月)3题:一个盒中装有7枚硬币:2枚1分的',2枚5分的,2枚10分的,1枚25分的。每次取出两枚,记下它们的和,然后放回盒中,如此反复。那么记下的和至多有多少种不同的数?

  枚举出两枚硬币搭配的所有情况

  共有9种可能的和。

数学解题方法7

  文章摘要:使用正确的解题方法不但可以大大加快解题的速度而且可以提高解题的正确率。为此,数学频道编辑部整理了一些巧妙的解题方法,以便同学们更好的去学习这些知识。

  巧化归

  将某一问题化归为另一问题,将某些已知条件或数量关系化归为另外的条件或关系,变难为易,变复杂为简单。

  例1 甲乙两工程队分段修筑一条公路,甲每天修12米,乙每天修10米。如果乙队先修2天,然后两队一起修筑,问几天后甲队比乙队多修筑10米?

  此题具有与追及问题类似的数量关系:甲每天修筑12米,相当于甲的“速度”;乙每天修筑10米,相当于乙的'“速度”,乙队先修2天,就是乙先修10×2=20(米),又要甲比乙多修10米,相当于追及“距离”是20+10=30(米)。

  由此可用追及问题的思维方法解答,即

  追及“距离”÷“速度”差=追及时间

  ↓ ↓ ↓

  (10×2+10)÷(12-10)=15(天)

  例2 大厅里有两种灯,一种是上面1个大灯球下缀2个小灯球,另一种是上面1个大灯球下缀4个小灯球,大灯球共360个,小灯球共有1200个。问大厅里两种灯各有多少盏?

  本题若按一般思路解答起来比较困难,若归为“鸡兔问题”解答则简便易懂。

  把1个大灯球下缀2个小灯球看成鸡,把1个大灯球下缀4个小灯球看成免。那么,1个大灯球缀2个小灯球的盏数为:

  (360×4-1200)÷(4-2)=120(盏)

  1个大灯球下缀4个小灯球的盏数为:

  360-120=240(盏)

  或(1200-2×360)÷(4-2)=240(盏)

  例3 某人加工一批零件,每小时加工4件,完成任务时比预定时间晚2小时,若每小时加工6件,就可提前1小时完工。问预定时间几小时?这批零件共有多少件?

  根据题意,在预定时间内,每小时加工4件,则还有(4×2)件未加工完,若每小时加工6件,则超额(“不定”)(6×1)件。符合《盈亏问题》条件。

  在算术中,一定人数分一定物品,每人分的少则有余(盈),每人分的多则不足(亏),这类问题称盈亏问题。其算法是:

  人数=(盈余+不足)÷分差(即两次每人分物个数之差)。

  物品数=每人分得数×人数。

  若两次分得数皆盈或皆亏,则

  人数=两盈(亏)之差÷分差。

  故有解:

  零件总数:4×7+4×2=36(件)

  或 6×7-6×1=36(件)

  例4 一列快车从甲站开到乙站需要10小时,一列慢车由乙站开到甲站需要15小时。两辆车同时从两站相对开出,相遇时,快车比慢车多行120千米,两站间相距多少千米?

  按“相遇问题”解是比较困难的,转化成为“工程问题”则能顺利求解。

  快车每小时比慢车多行120÷6=20(千米)

  例5 甲乙二人下棋,规定甲胜一盘得3分,乙胜一盘得2分。如果他们共下10盘,而且两人得分相等,问乙胜了几盘?

  此题,看起来好像非要用方程解不可,其实它也可以用“工程问题”来解,把它化归为工程问题:“一件工作,甲独做3天完成,乙独做2天完成。如果两人合做完成这样的10件工作,乙做了几件?

  例6 小前和小进各有拾元币壹元币15张,且知小前拾元币张数等于小进壹元币张数,小前壹元币张数等于小进拾元币张数,又小前比小进多63元。问小前和小进有拾元币壹元币各多少张?

  本题的人民币问题可看作是两位的倒转数问题,由两位数及其倒转数性质2知,小前的拾元币与壹元币张数差为63÷9=7,故

  小前拾元币为(15+7)÷2=11(张),壹元币为15-11=4(张)。

  小进有拾元币4张,壹元币11张。

  巧求加权平均数

  例7 某班上山采药。15名女生平均每人采2千克,10名男生平均每人采3千克,这个班平均每人采多少千克?此题属加权平均数问题。一般解法:

  =3-0.6=2.4(千克)

  这种计算方法迅速、准确、便于心算。

  算理是:设同类量a份和b份,a份中每份的数量为m,b份中每份的数量为n((m≤n)。

  因为它们的总份数为a+b,总数量为ma+nb,加权平均数为:

  或:

  这种方法还可以推广,其算理也类似,如:

  某商店用单价为2.2元的甲级奶糖15千克,1.05元的乙级糖30千克和1元的丙级糖5千克配成什锦糖。求什锦糖的单价。

数学解题方法8

  提高解数学综合性问题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的同学来说,是一道生命线,往往成也萧何败也萧何;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。

  1.综合题在高考试卷中的位置与作用:

  数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。

  2.解综合性问题的三字诀:

  三性:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好三性,即:

  (1)目的性:明确解题结果的终极目标和每一步骤分项目标。

  (2)准确性:提高概念把握的准确性和运算的准确性。

  (3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。

  三化:

  (1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的`关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。

  (2)问题简单化。即把综合问题分解为与各相关知识相联系的简单问题,把复杂的形式转化为简单的形式。

  (3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。

  三转:

  (1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。

  (2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。

  (3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。

  三思:

  (1)思路:由于综合题具有知识容量大,解题方法多,因此,审题时应考虑多种解题思路。

  (2)思想:高考综合题的设置往往会突显考查数学思想方法,解题时应注意数学思想方法的运用。

  (3)思辩:即在解综合题时注意思路的选择和运算方法的选择。

  三联:

  (1)联系相关知识,(2)连接相似问题,(2)联想类似方法。

  3.对平时综合练习的反思:

  平时做完综合练习后,要注重反思这一环节,注意方法的优化。要把解题的过程抽象形成思维模块,注意方法的迁移和问题的拓展。再最后的自由复习阶段也可选取部分做过的综合卷中的压轴题进行反思,主要研究:审题分析的过程(如:寻求条件与结论联系,与基础知识的联系,与平时基本方法的联系)、隐含条件的运用、计算方法及准确性。

数学解题方法9

  摘 要:数学思想、数学方法很多,这里仅就高中教材中和考试题中常见的四种:函数思想、数形结合思想、分类讨论思想、转化化归思想作些探讨,让学生从中体会四种基本数学思想方法在解题中的重要作用。

  关键词:数学;思想方法;高中;应用

  数学思想、数学方法很多,这里仅就高中教材中和考试题中常见的四种:函数思想、数形结合思想、分类讨论思想、转化化归思想作些探讨,让学生从中体会四种基本数学思想方法在解题中的重要作用。

  函数思想就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决的思想。

  方程思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型―方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想。

  1、函数与方程的思想

  函数与方程的思想是高中数学中最基本也是最重要的思想方法之一,在高考中有非常重要的地位。数学中很多函数的问题需要用方程的知识和方法来支持,很多方程的问题需要用函数的知识和方法去解决,即函数与方程可相互转化。

  下面来看这样一道例题:

  例1:和 的`定义域都是非零实数集,是偶函数,是奇函数,且求的取值范围。

  分析:已知两个函数的和,求商,好象从未见过。我们不能只看符号,不注重文字,其实这一题的关键在于“是偶函数,是奇函数”,于是就有,又有再把换成。这时不能再把 当函数解析式来看了,知道了+,-就可以把它们当成两个未知数,只需去解一个二元一次方程组问题就解决了。

  由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考要考察的重点,它在解析几何、立体几何、数列等知识中都有广泛应用。

  2、数形结合的思想

  数形结合思想就是充分运用数的严谨和形的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象思维和形象思维结合,通过图形的描述,代数论证来研究和解决数学问题的一种数学思想方法。

  数学是研究数量关系和空间形式的科学,数和形的关系是非常密切的。把数和形结合起来,能够使抽象的数学知识形象化,把数学题目中的一些抽象的数量关系转化为适当的几何图形,在具体的几何图形中寻找数量之间的联系,由此可以达到化难为简、化繁为易的目的。

  看一道数形结合的例题:

  例2:已知关于x 的方程=px,有4个不同的实根,求实数p的取值范围。

  分析:设y = = 与y=px这两个函数在同一坐标系内, 画出这两个函数的图像

  (1)直线y= px与y=-(x-4x+3),x[1,3]相切时原方程有3个根。

  (2)y=px与x轴重合时, 原方程有两个解, 故满足条件的直线y=px应介于这两者之间,由:得x+(p -4)x+3=0,再由△=0得,p=4±2,当p=4+2时, x=-[1,3]舍去, 所以实数p的取值范围是0,在数学中只要我们注意运用数形结合思想,既可增加同学们对数学的兴趣,同时又能提高对数学问题的理解力和解题能力,也是提高数学素质不可缺少的因素之一。

  3、转化与化归的思想

  转化与化归思想是通过某种转化过程,把待解决的问题或未知解的问题转化到已有知识范围内可解的问题或者容易解决的问题的一种重要思想方法。通过不断转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。

  转化与化归的思想贯穿于整个数学中,掌握这一思想方法,学会用转化与化归的思想方法分析问题、处理问题有着十分重要意义

  看一个简单的例子:

  例3:求函数的最值

  分析:若平方、移项等,你会发现这些尝试都是徒劳无功的。我们注意到:可以把换成什么?有了,也是在上的!

  从某种意义上讲,解答每一道题都是通过探索而找到解题思路,通过转化达到解题目的。转化时,一般是把一个领域内的问题转化为另一个领域内的问题;把实际问题转化为数学模型;把陌生繁复的问题转化为熟悉,简单的问题等。

  4、分类讨论的思想

  所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”。

  分类讨论时,必须遵循两个原则:(1)对存在总域的各个子域分类做到“既不重复,又不遗漏”;(2)每次分类必须按同一标准进行。数学分类思想的关键在于正确选择分类标准,要找到适当的分类标准,就必须运用辨证的逻辑思维,就必须对具体事物具体分析,在表面上极为相似的事物之间看出它们本质上的差异点,在表面上差异极大的事物之间看出它们本质上的相同点。这样才能揭示数学对象之间的内在规律,对数学对象进行有意义的分类。

  分类讨论难免会有点繁琐,看似一道题,却相当于几道题的工作量。但当目标不明确时,分类讨论就是开门钥匙了!

  分类讨论思想是解决问题的一种逻辑方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位。

  以上四种数学思想方法对认知数学活动的一般规律;对领悟数学精神、思想和方法,建立正确的数学观和数学教育观;对改进学生的学习、提高学业成绩、提高数学素质、培养智能型、创新型人才都能起到积极的推动作用,所以在今后的学习过程中,我们要不断进行归纳和总结,不断体会这四种重要数学思想方法在数学解题中的作用。

数学解题方法10

  文章摘要:使用正确的解题方法不但可以大大加快解题的速度而且可以提高解题的正确率。为此,数学频道编辑部整理了一些巧妙的解题方法,以便同学们更好的去学习这些知识。

  巧试商

  (1)定位打点

  首先用打点的方法定出商的最高位。

  其次用除数的最高位去除被除数的前一位(如果被除数的前一位不够,就除被除数的前两位)。

  最后换位调商。试商后,如果除数和商相乘的积比被除数大时,将试商减1;小时,且余数比除数大,将试商加1.例略。

  (2)比积法

  就是在求得商的最高位后,以后试商时,把被除数和已得的商与除数之积比较,从而确定该位上的商。常可一次试商获得成功,从而提高解题速度,还可培养学生的比较判断能力。

  例如,9072÷252=36.

  十位上商3,得积756.在个位上试商时,只要把1512与756相比较,便知1512是756的2倍,故商的个位应是3的2倍6.特别是当商中有相同数字时,更方便。

  本题在个位上试商时,只要把1268与1256相比较,便知应为8,且很快写出积1256,从而得到余数12.

  (3)四舍五入法

  除数是两、三位数的除法。根据除数“四舍五入”的试商方法,常需调商。若改为“四舍一般要减一,五入一般要加一”,常可一次定商。

  例如,175÷24,除数24看作20,被除数175,初商得8,直接写商7.

  2299÷382,382可看作400,上商5,积是20xx.接近2299,但结果商还是小,可直接写商6.

  (4)三段试商法

  把两位数的除数的个位数1—9九个数字,分为“1、2、3”、“4、5、6”、“7、8、9”三段来处理。

  当除数的个位数是1、2、3时,用去尾法试商(把1、2、3舍去)。

  商。

  当除数个位数是4、5、6时,先用进一法试商,再用去尾法试商,然

  商为8,取6—8之间的“7”为准确商。如果两次初

  是初商6、7中的“6”.

  (5)高位试低位调

  用除数最高位上的数去估商,再用较低位上的数调整商。例如:513÷73=7的试商调商过程如下。

  A.用除数十位上的7去除被除数的前两位数51,初商为7;

  B.用除数个位上的3调商:从513中 去减7与70的`积490,余23,23比初商7 与除数个位数3的积21大,故初商准确,为7.

  如果283÷46时,用除数高位上的4去除28,初商为7,用除数个位6调商,从283中减去7与40的积余3,3比7与除数个位数6的积42小,初商则过大。调为6.

  这种试商方法简便迅速,初商出得快,由于“低位调”,准确商也找得准。同时,由于用除数最高位上的数去估商时,初商只存在过大的情况,调整初商时只需要调小,这样,调商也较快。

  但是,有时在采用这种方法试商时,初商与准确商仍存在着差距过大的

  调商,从181中减去6与30的积,余1,1比6与7的积小,照理应将初商调为5,因为1比42小41,而41>37,为了减少调商次数,直接将初商调为“4”,称为“跳调”。这样便于较快地找出准确商。

  (6)靠五法

  对除数不大接近于整十数、整百数的,如9424÷152,不论用舍法或者入法,都要两次调商。如果我们把除数152看作150,即不是用四舍五入法,而是向五靠,一般能减少试商次数,甚至可以一次定商。

  (7)同头无除

  当被除数和除数的最高位数字相同,而被除数的次高位数字又比除数次高位数字小的,例如3368÷354=9……,1456÷182=8,一般的就用“同头无除商8、9”.

  (8)半除

  被除数的前一位或两位数正好是除数前两位数的一半或接近一半的,例如965÷193=5,1305÷261=5,一般用“半除商5”.

  (9)一次定商法

  对确定每一位商,分四步进行:

  第一步,用5作基商,先求出除数的5倍是多少;

  第二步,求差数,即求出被除到的数与除数的5倍的差数;

  第三步,求差商,差数÷除数=“差商”;

  第四步,定商,若差数>0,当差商是几,定商为“5+几”,若差数<0,当差商是几,定商为“5-几”。

  例如:517998÷678=764……6

  (1)先从高位算起,定第一位商7.

  先求除数的5倍:678×5=3390求差商(5179-3390)÷678=2……;

  定商 5+2=7;

  (2)定第二位商6.

  差商(4339-3390)÷678=1……

  定商 5+1=6;

  (3)定第三位商4.

  被除数与除数5倍的差小于0,差商不足1,

  定商5-1=4,即2718÷678的商定为4.

  对于上述一次定商法,在定商的过程中,如果被除到的数是除数的1倍或2倍,可以直接定商,不必拘泥于上面四步。

数学解题方法11

  1.常数问题:

  (1)点到直线的距离中的常数问题:

  “抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:

  先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。

  (2)三角形面积中的常数问题:

  “抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:

  先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。

  2.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:

  先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的'方法)。

  3.三角形周长的“最值(最大值或最小值)”问题:

  “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):

  由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。

  4.三角形面积的最大值问题:

  ①“抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):

  (方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离。最后利用三角形的面积公式底·高1/2。即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。

  (方法2)过动点向y轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到转化为一个开口向下的二次函数问题来求出最大值。

  ②“三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):

  先把动三角形分割成两个基本模型的三角形(有一边在x轴或y轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。利用相似三角形的性质(对应边的比等于对应高的比)可表示出分割后的一个三角形的高。从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。

数学解题方法12

  我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。

  少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来。从此在熊庆来先生的'引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!

  华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:

  有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。

  3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。

  聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“

  为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。

  这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。

  看到这里。同学们可能会拍手称妙吧。后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。

数学解题方法13

  文章摘要:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。

  巧用最小公倍数

  例1 一篮子鸡蛋,2个2个地数多1个。3个3个地数多1个,4个4个地数多1个,5个5个地数多1个,6个6个地数多1个,7个7个地数正好不多不少。试问这篮子鸡蛋是多少个?

  解:鸡蛋数量是一个比2、3、4、5、6的公倍数多1,而且恰好是7的倍数的数。

  2、3、4、5、6的最小公倍数是60,但60+1=61不是7的倍数。60的2倍、3倍、4倍加上1以后都不满足条件。

  只有60的5倍加1能被7整除,所以鸡蛋数是:

  60×5+1=301(个)

  满足上述条件的`数还有721,1141……但篮子里不可能装这么多鸡蛋。

  例2 孟老师负责运动会团体操的队形排列。他在操场上把参加团体操的同学排成10人一行,发现少1人;排成9人一行,还是少1人;排成8人一行,还是少1人;排成7人一行、6人一行……2人一行,每次总是少1人。孟老师生气了:真见鬼,怎么排都少1人!到底有多少人参加团体操?全校的学生都来了也不过3000人。

  解:孟老师只要把自己算进去,那么10人一行也好,9人一行也好……,2人一行也好,都能恰好分完,就是说,正好是10、9、8、7、6、5、4、3、2的公倍数。这几个数的最小公倍数2520,减去孟老师,所以是2519人。

  例3 三人绕圆形花园散步,甲45分钟绕一周;乙60分钟绕一周;丙72分钟绕一周。今三人同地同向同时起行。问经几小时后在原地相会?相会时各绕几周?

  解:相会时必定是三人绕花园一周时间的公倍数,而最少时间为其最小公倍数。

  [45,60,72]=360

  原处相会需经360÷60=6(小时)

  甲绕 360÷45=8(周)

  乙绕 360÷60=6(周)

  丙绕 360÷72=5(周)

  例4 某毕业班开茶话会,两人一盘桔子,三人一盘梨,四人一盘糖,共用盘65个。参加会议的学生多少人?

  解:人数是2、3、4的公倍数,其[2,3,4]=12,即至少12人,用盘

  12÷2+12÷3+12÷4=13(个)

  因为实际用盘是13的65÷13=5(倍),所以参加会的学生是

  12×5=60(人)

  例5 农机厂生产一批零件,单独做甲车间10天完成,乙车间8天完成,已知乙车间每天比甲车间多生产200个零件,这批零件一共多少个?

  此题解法很多,但都没有用求最小公倍数的方法来得简便。

  求出10和8的最小公倍数,就是求出了至少要经过多少天,乙车间比甲车间多生产整整“一批零件”。

  [10,8]=40 200×40=8000(个)

  例6 甲、乙两车同时从A至B,甲车每小时行48千米,乙车每小时行36千米。甲车途中停留4小时,结果比乙车迟到1小时,求A、B两地的距离。

  此题的解法也很多,但都比不上求最小公倍数的解法巧妙。

  由题意可知,从A至B,甲车比乙车少用4-1=3(小时),可用求最小公倍数法求出至少行多少千米,甲车比乙车少用1小时,那么,3个这样的多少千米就是A、B两地间的距离。

  [48,36]=144

  144×(4-1)=432(千米)

  例7 两个小学生滚铁环,当甲环旋转50周时,乙环在同样的距离中转了40周,如果乙环的周长比甲环长0.44米,求这段距离?

  解:[50,40]=200

  这段距离为0.44×200=88(米)

  因为50与40的最小公倍数是200,而200÷50=4,200÷40=5,说明都转200周时甲环行了4段这样的(88米)距离,而乙环又则行了5段同样的距离,比甲多出一段这样的距离。

  例8 一群鸭。三个三个地数,剩1只;五个五个地数,剩3只;七个七个地数,剩5只。连头带脚一起数,不超过500.这群鸭有多少只?

  解:因为鸭头、鸭脚总数不超过500,而一只鸭的头和脚是3,所以鸭的总数不会超过200只。

  鸭数用3除余1,用5除余3,用7除余5,它们的除数和余数都差2,加上2就一定能被这三个数整除。

  [3,5,7]=105

  鸭数为 105-2=103(只)

数学解题方法14

  数学选择题填空技巧

  1.直接法

  直接从数学题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。

  2.特例法

  用特殊值(特殊图形、特殊位置)代替数学题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。

  3.筛选法

  从数学题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确判断的方法叫筛选法或剔除法。

  4.代入法

  将各个数学选择项逐一代入题设进行检验,从而获得正确判断的方法叫代入法,又称为验证法,即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案。

  5.图解法

  据数学题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法。

  高考数学选择题小技巧

  数量原则

  理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3

  实际状态:每个选项在2——4的范围内。

  选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个

  三不相同原则

  即连续三个问题不会连续出现相同答案

  答案排列不会出现ABCDE的英文字母排列顺序

  中庸之道

  即数值优先选择“中间量”选项,选项优先考虑BCD。在同一道题中优先考虑数值的“中间量”后考虑选项BCD。(如E选项对应数值为中间量时,优先从数值入手考虑)

  出现诸如“以上结果都不对”的选项不予考虑

  由提干给定信息入手,通过选项特征排除错误选项

  选项基本特征如下:

  单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值)

  正值与负值(考前冲刺P12/25题根据提干排除负值)

  有零与无零

  区间的开与闭(看极端情况能否取等号)

  正无穷与负无穷(通过极限考虑)

  整数与小数(分数)

  质数与合数

  大于与小于

  整除与不能整除

  带符号与不带符号(例如根号、平方号等等)

  少数服从多数原则

  即看选项特征,具有同一特征多的选项优先考虑。

  复杂表达式化简题

  一般情况下选项出现1、2、0、-1、-2的情况比较多

  前后无定位,连续几道题均不会都需猜蒙答案的情况

  观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

  答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

  高考选择填空题的答题技巧

  (1)要注意审题,我们在考试的时候一定要把题目多读几遍,弄清楚我们需要做的是什么,题目和选项之间有什么关系,弄清楚题目再动手去解答。

  (2)答题时的顺序不一定要按照题号来进行。我们在做数学选择题的时候可以先从自己熟悉的题目开始,然后在去做自己不熟悉的.题,因为这样做可以使我们更快的进入考试的状态,处理难题的时候才会有更强的自信。

  (3)高考数学的选择题有大约七成的题都是按照直接法来解题的,所以我们要注意对富豪、概念、公式、定理等方面的理解和使用。例如函数和数列等题型就是考试常见的题目。

  (4)要方法多样,高考数学是考察能力的考试,做题的时候要注意方法,要善于使用各种解题技巧,比如排除、验证、转化、估算等技巧。一旦有了思路就要尽快作答,不要在一些小提上过多的浪费时间,如果实在没有思路,我们也要坚定信心,就算是蒙题,也有四分之一的几率蒙对。

  (5)在做数学选择题的时候,一定要控制好时间,最多不要超过四十分钟,为后面答题留下时间,以免时间浪费过多导致答不完卷。

  高三数学选择填空解题技巧

数学解题方法15

  1.直接法

  有些选择题是由计算题、应用题、证明题、判断题改编而成的。这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。

  2.筛选法

  初中数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。可通过筛除一些较易判定的.的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后,结论只有一个,则为应选项。

  3.验证法

  通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

  4.特殊值法

  有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

  5.图象法

  在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

  6.试探法

  对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。

【数学解题方】相关文章:

数学解题方法11-28

【精选】数学解题方法11-28

(热门)数学解题方法15篇11-28

中考数学的实用解题技巧02-01

数学解题方法15篇(热门)11-28

高一数学解题套路分享03-11

中考数学解题技巧与压轴题的解法04-12

看我解题绝招作文05-06

高一数学关于几何中求参数取值范围的解题技巧03-15

培养学生良好的解题习惯03-22