数学解题方

时间:2025-11-28 17:05:58 好文 我要投稿
  • 相关推荐

数学解题方法

数学解题方法1

  1 中学数学教学的逻辑特点

数学解题方法

  (1)思维抽象,逻辑表述符号化。数学老师的课堂表述,旨在准确表述某个概念或判断。较之灵活、形象的文学语言,中学数学老师的这种表述语言的确枯燥,尤其是对于那些语文基础不佳的学生,估且不论学生是否理解,就连表述本身的内在逻辑性也未必明了,如再遇到普通话不好、表述含糊的数学老师,其课堂接受效果可想而知,何谈师生之间的思维同步、愉悦教学?实践印证,但凡令学生满意的中学数学老师,无不熟谙教材、精通题型,尤其是课堂逻辑表述,均有其优长之处――善抓要点、精炼抽象、逻辑清晰;而不择要点、逻辑含糊者,即便是尖子生也往往心生不悦。

  (2)符号简约,逻辑关系内在化。中学数学的逻辑关系,尽管是以特定的数学符号加以表述或陈列,但均有其内在的数学逻辑性;欲依据显现的条件洞悉或推导未知要素,只有从其内在数学逻辑上入手,方能由已知求未知,即已知与未知之间,必有某种内在联系,只要洞悉了个中的联系性,问题也就迎刃而解了。以相交线一节中的垂线为例,应表述为:“两条直线相互垂直,其中的一条直线是另一条直线的垂线”;又如,同位角、内错角、同旁内角,无非是一条直线与两条直线分别相交,各角之间的关系而已。无可质疑的是,中学数学的题型、难易设置,多为循序渐进、逐步增难。

  (3)严密自然,逻辑论证据理化。中学数学的列式与推导,每一步都基于命题、公式、定理等,且只能用数学思维破解或论证。换言之,中学数学教学语言必须兼具两方面要因,一是表述某一概念或题意时,必须表述准确、论据可靠;二是解题过程中,前后顺序和逻辑关系必须严密无隙。就此而言,一个出色的中学数学老师,必定是位深谙形式逻辑学,并能够依照数学的相关符号融入自己的理解,严密自然的将题意或要点表述于课堂的语言大师;数学教学语言失之于缜密严谨,又能讲好数学课者几近于零。因此,中学数学老师不妨读点形式逻辑学方面的书籍,必裨益于课堂教学效果。

  (4)命题复杂,逻辑推导假设化。中学数学的对比、分析、综合、归纳,多基于理或公理,尽管命题复杂,但其逻辑推导过程却充满了数学趣味,只要抓住规律与要点,再难的问题也有其解法,且不乏多种解法。以题设和结论为例,如:如果两条直线与第三条直线平行(题设),那么这两条直线也互相平行(结论)。此为简单命题,复杂命题常以另一种假设句表述,即“如果……那么……”的形式。如此表述时,“如果”后是题设,“那么”后是结论。当然,有些命题的题设和结论并不明显,需要分析才能找出,例如,命题“对顶角相等”可写成“如果两个角是对顶角,那么这两个角相等”。

  (5)富于情趣,逻辑思维生活化。中学数学老师未必要讲故事,但题型导入绝对少不了故事,尤其是贴近学生生活的疑难故事。如讲平面直角坐标时,有经验的老师会这么问:“去电影院看电影时,如何迅速找到自己的座位呢?”闻此,同学们自然会想到按电影票上的“排数”和“号数”对号入座;按此思维,再问:“假如你参加奥运会开幕式表演,怎样才能在数千人的表演阵容中,准确找到自己的站立点?”如此贴近生活的设疑,自然会激发学生对平面直角坐标的兴趣,并由此联想到更为广阔的大地坐标、航海定位等事项。中学数学教学语言的情趣化、生活化,意在贴近生活、拓宽思维。

  (6)贵在启智,逻辑结构留白化。中学数学老师未必懂得书画,但有一点却与书画家极其相近――逻辑结构留白,即在授课过程中,不论时间是否充裕,都要适度留有让学生稍加思考或发问的时间,其作用看似简单的停顿或交流,实则如同书画家在其作品上所留的相应空白。如品读南宋马远的《寒江独钓图》,画中仅有一个渔翁在雪中垂钓,却给人以丰富的艺术想象。中学数学老师的“课堂留白”,既是师生之间的解惑问疑,也是学生进一步理解、消化所学内容之必须。况且,就中学生注意力特点而言,“满堂灌”极易使学生困乏疲劳,适度的“留白”无疑更有益于学生消化理解所学内容。

  2 中学数学解题的思维路径

  (1)准确审题,隐含条件定思路。众所周知,士兵在射击比武中,无论其射击技术多么高超,扣动扳击之前都必须了然目标的距离、方位、大小及要害所在,至少要基本上清楚,方能有的放矢。同理,面对复杂的中学数学题,欲顺利、正确解题,也有一个准确审题的.问题。须知,审题是解题的前提,而且是无可绕过的前提――不知题型题意,提笔就解极易因理解不全、不准而白费功夫。审题的要点在于:一是首先弄清题意,尤其是吃透其命题的数学逻辑关系;二是通过该逻辑结构,从数学的内在规律上洞悉给出的隐含的条件,为进一步求证或推导确认正确解题思路。

  (2)巧于做熟,转化点上觅蹊径。商海创业经验中,有一则普遍认同的成功要诀――做熟不做生,即不要轻易投身陌生的领域,尤其是在毫无该领域的经验与技术时。同理,在破解中学数学的各类问题时,也存在一个做熟不做生的秘诀。这里所说的熟,意指那些已经学过、掌握、熟知的定理、定义、公式及推导方式等,而生则是暂且尚未接触和了解的陌生知识与技巧。如何做熟?就规律而言,主要有四个转化点:一是将问题一般化的方法;二是将问题特殊化的方法;三是将问题一步步进行肢解的方法;四是将问题转为其它形式或题型的方式。灵活运用上述“四法”,也便游刃有余了。 (3)功于积累,循序善诱拓思路。处身中学数学老师岗位,无论教龄长短,皆有其自己的教学优长:初为人师,虽说谈不上教学经验,但课堂反映敏捷、思维活跃,加之年纪与中学生相近,共同语言多一些,交流起来了无代沟障碍,很快会被学生所接纳。值得注意的是,此类数学老师往往性格帅直、耐性不足,易与学生(同性别居多)发生矛盾,如能扬长避短、注意修养,并功于教学经验与解题方法的累积,势必更受中学生的青睐;年长的老师,基于职业、专业的多年历练与积累,每人都有一套独属于自己的思维方式与解题策略,如克服过于自负、完美的积习,则为学生之幸。

  (4)把握规律,吃透例题巧推敲。任何一部教材,只要是经国家教育部审定的义务教育教科书,编写中都疑聚了参与课改的教育专家、学科专家、教研人员及一线教师的共同智慧,并在内容设置上按着各学科的教学特点与要求,遵循“由易至难、循序渐进、内在联系、梯次设置”的原则。以中学数学中的“平方根”一节为例,欲全面、细致地掌握此节,只要认真领会其中的“问题、练习、探究、思考、归纳”部分即可,无须舍本逐末另做所谓的“题海”。其原因在于,吃透上述部分,也便把握了此节课的精髓,如能引导学生吃透教材,也便事半而功倍了。

  (5)自我质疑,一题多解穷思路。中学数学教学不怕学生记忆力差,也不怕学生基础差,就怕学生的思维滞后。遇此苦恼大可不必伤神,只要有意传授一些思维方式,即可谓授之以“渔术”。思维心理学认为,人至少有53种思维方式,如发散思维、系统思维、链条思维、逆向思维、求同思维、求异思维等。其实,不必全然了解,只精通其中几个也就足矣。仅以“求异思维”为例,在顺利破解某道难题后,如能自觉质疑――此题属何种类型?此类型的解题依据是什么?各要点之间有何关联?出题思路与解题思路上,至少有几种排列与组合?如是穷尽式思维,必能受益匪浅。

  (6)暂且搁置,潜意识下寻突破。数学教学是否有必要借助潜意识?答案是肯定的,无论是老师还是学生,都有这种经历――遇到百思不解的难题时,索性暂且搁置一边,改忙别的事情。然而,不知何故居然在梦里、坐车、洗澡时,难题却恍然大悟、茅塞顿开,这就是常被人忽视的潜意识作用。心理学认为,潜意识蕴藏着人在有意无意间所感知或认知的信息,并能够将它们自动的排列、组合、分类,进而产生一种新的信念,并多在心态放松状态下出现。教学中,为培养学生独立思考问题的能力,对那些可隔日揭谜的难题,不妨给学生一个潜意识思考的机会,或更有益。

  (7)归类研习,立体推进明思路。中学数学教师最苦恼的,莫过于学习态度、勤奋精神皆不成问题,仍无学科长进良策。对此,教师固然要反思教学思路与教学方法,但作为学生也应主动寻求一条更为适合的学习方法。对此,某高材生的经验或可借鉴:中学阶段,数学成绩平平的他独创了一种“归类研习,立体推进”的学习方法,即买来几本与教材同步的参考书,老师讲到哪节,认真阅读教材、吃透例题后,再横向参考、立体研习、多维思考,重点解决归类思考、多维求解的思路问题。如是坚持,虽未再通宵达旦苦读,成绩却显著提高,远超埋身于“题海战术”的同学。

  3 结语

  中学数学教学,看拟单纯的数学学科,实则构建于扎实的语文基础之上。语文基础不扎实,就无法准确理解与把握题意及内在要点的关联性;出色的中学数学老师,尤不可或缺形式逻辑素养。换言之,惟其逻辑表述清晰、明了,学生才能准确理解、同步思考。基于此,各种解题方法及思维路径,也便水到渠成。

数学解题方法2

  对于数学解题中几何变换法的知识,同学们需要掌握下面的内容。

  几何变换法

  在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

  另一方面,也可将变换的'观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  几何变换包括:(1)平移;(2)旋转;(3)对称。

  上面对几何变换法的讲解学习之后,相信同学们已经很好的掌握了上面的解题方法,希望可以很好的帮助同学们解答数学题目。

数学解题方法3

  我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。

  少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!

  华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:

  有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的`颜色。

  3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。

  聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“

  为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。

  这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。

  看到这里。同学们可能会拍手称妙吧。后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。

数学解题方法4

  复习备考需要足够数量的习题,只有针对性训练才能在中考得以正常发挥,只有每天动笔适当的做些习题才能保持思维的连贯性。但仅仅做题还是远远不够,需要解题后的反思与总结。在反思中才能进一步看透问题的本质,体会命题的意图。在总结的过程中也才能优化解题的思路,探索处理问题规律,形成有自己特色的经验。

  在复习中既要注重数学概念、法则、定理等基础知识的梳理,更要关注解题后的反思与总结,领会解题中蕴含的数学思想方法,并通过不断积累逐渐的纳入自己已有的知识体系。在反思总结中可以从两方面考虑:一是宏观层面,如每复习一块内容后可以从主要知识考点、考点之间的联系等去反思;二是微观层面,如解题后的可以对所解题的结构是否理解清楚,解题过程中运用了哪些基础知识和基本技能?哪些步骤易出错?原因何在?如何防止?也可以对解题的方法进行评价找出最优的解法,考虑解题中运用了哪些思维方式、数学思想方法?想法是如何分析出来的?有无规律可循?也可以对解题步骤进行分析,抓住解题的'关键。如解题的难点在哪?我是如何突破的?能否用其他方法也得到同样结果?其方法的优劣所在?若能把反思与总结当作一个经常性、自觉性的学习行为,就会在不断地积累和总结基本的数学活动经验中,提高数学知识的运用能力。

数学解题方法5

  反证法在解答证明题目中会经常用到,同学们认真学习下面的解题方法。

  反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的'反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  对于反证法解题方法的讲解,相信可以很好的帮助同学们的学习工作,希望同学们认真学习,并很好的做好备战考试的工作。

数学解题方法6

  1、证明切线的三种方法:

  ⑴、定义一个交点;

  ⑵、d=r;(若一条直线到圆心的距离等于半径,则这条直线是圆的切线)

  ⑶、切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)

  2、切线的八个性质:

  ⑴、定义:唯一交点;

  ⑵、切线和圆心的距离等于半径; (d=r)

  ⑶、切线的性质定理:圆的切线垂直于过切点的半径;

  ⑷、推论1:过圆心(且垂直于切线的直线)必过切点;

  ⑸、推论2:过切点(且垂直于切线的直线)必过圆心;

  ⑹、切线长相等;过圆外一点作圆的`两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。

  ⑺、连结两平行切线切点间的线段为直径

  ⑻、经过直径两端点的切线互相平行。

  3、证明切线的两种类型:

  ⑴、已知直线和圆相交于一点

  证明方法:连交点,证垂直

  ⑵、未知直线和圆是否相交于哪点或没告诉交点

  证明方法:做垂直,证半径

数学解题方法7

  解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。

  基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。

  著名的数学教育家波利亚说“如果没有反思,就错过了解题的的一次重要而有意义的方面。”

  教师在教学设计中要让解学生好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。

  1. 函数与方程的思想

  函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的`数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

  而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

  2. 数形结合的思想

  数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。

  因此数形结合的思想对问题的解决有举足轻重的作用。

  3. 分类讨论的思想

  分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。

  原因四是实际问题中常常需要分类讨论各种可能性。

  解决分类讨论问题的关键是化整为零,在局部讨论降低难度。

数学解题方法8

  高中数学学习方法:其实就是学习解题

  高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。

  1、首先是精选题目,做到少而精。

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:

  设多边形的边数为N

  则其内角和=(N-2)*180°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的外角和

  =N*180°-(N-2)*180°

  =N*180°-N*180°+360°

  =360°

  即N边形的外角和等于360°

  设多边形的边数为N

  则其外角和=360°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的内角和

  =N*180°-360°

  =N*180°-2*180°

  =(N-2)*180°

  即N边形的内角和等于(N-2)*180°

  如何学好数学

  首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。

  一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。

  二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。

  3.有重点。4。提高听课。

  三.。像演电影一样把课堂,整理笔记,

  四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,

  五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。

  六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,

  另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。

  《希腊文集》中的方程问题

  《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。

  《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”

  我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程

  这是一个一元一次方程。

  移项,得

  答:毕达哥拉斯有28名学生听课。

  《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:

  “驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”

  这个问题可以用方程组来解:

  设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有

  2(x-1)=y+1 (1)

  又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有

  x+1=y-1 (2)

  (1)与(2)联立,有

  这是一个二元一次议程组。

  (1)-(2)得 x-3=2,

  x=5 (3)

  将(3)代入(2),得y=7。

  答:驴原来驮5口袋,骡子原来驮7口袋。

  《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的'守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。

  这道题也是用诗歌形式写在的:

  爱罗斯在路旁哭泣,

  泪水一滴接一滴。

  吉波莉达向前问道:波利尼

  “是什么事情使你如此伤悲?

  我可能够帮助你?”

  爱罗斯回答道:

  “九位文艺女神

  不知来自何方

  把我从赫尔康山采回的苹果,

  几乎一扫而光,

  叶芙特尔波飞快地抢走十二分之一,

  爱拉托抢得更多——

  七个苹果中拿走一个。

  八分之一被达利娅抢走,

  比这多一倍的苹果落入特希霍拉之手。

  美利波美娜最是客气,

  只取走二十分之一。

  可又来了克里奥,

  她的收获比这多四倍。

  还有三位女神,

  个个都不空手,

  30个归波利尼娅,

  120个归乌拉尼娅,

  300个归卡利奥帕。

  我,可怜的爱罗斯。

  爱罗斯原有多少个苹果?还剩下50个苹果。”

  设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。

  可列出方程

  答:爱罗斯原来有苹果3360个。

  选自《中学生数学》20xx年5月下

  20xx高考数学复习三步曲

  编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!

  今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。

  理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。

  抓基础:不变应万变

  把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。

  当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。

  理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。

  尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。

  破难题:提升应对力

  如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。

  理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。

  为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。

  重方法:培养好品质

  有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。

  我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!

  以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。

  生物数学概论

  生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。

  生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。

  生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。

  由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。

  生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。

  数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。

  数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。

  比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。

  还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。

  由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。

  多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。

  生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。

  多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。

  系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。

  在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。

  生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。

  概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。

  60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。

  继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。

  上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。

  总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。

  数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。

  当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。

  20xx年高考数学命题预测之立体几何

  【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

  20xx年高考中立体几何命题有如下特点:

  1.线面位置关系突出平行和垂直,将侧重于垂直关系。

  2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。

  3.多面体及简单多面体的概念、性质多在选择题,填空题出现。

  4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。

  此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题

数学解题方法9

  不等式(组)模型

  解题思路:合理设未知数,根据已知的或隐含的不等关系,列出含有未知数的不等式(组),然后解不等式(组),最后验证解的合理性.

  通过上面对不等式(组)模型解题方法的讲解,相信同学们可以很好的掌握上面的`解题方法了。

  初中数学解题方法之常用的公式

  下面是对数学常用的公式的讲解,同学们认真学习哦。

  对于常用的公式

  如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。

数学解题方法10

  数学试卷答得好坏,主要依靠平日的基本功。只要“双基”扎实,临场不乱,重审题、重思考、轻定势,那么成绩不会差。切忌慌乱,同时也不可盲目轻敌,觉得自己平时数学成绩不错,再看到头几道题简单,就欣喜若狂,导致“大意失荆州”。不是审题有误就是数据计算错误,这也是考试发挥失常的一个重要原因,要认真对待考试,认真对待每一道题主要把好4个关:

  1、把好计算的准确关。

  2、把好理解审题关“宁可多审三分,不抢答题一秒”。

  3、把好表达规范关。

  4、把好思维、书写同步关。

  一、对题目的书写要清晰:

  做到稳中有快,准中有快,且快而不乱。要提高答题速度,除了上述的审题能力、应答能力外,还要提高书写能力,这个能力不仅是写字快,还要写得规范,写得符合要求。比如,填空题的内容写在给定的横线上,改正错误时,要擦去错误重新再写,不要乱涂乱改;计算题要把解写上,证明题要把证明两字写上,内容从上到下、从左到右整齐有序,过程清楚;尤其几何题要一个步骤一行,步骤要详细,切不可跳步。作图题用铅笔作答等。答题时不注意书写的清晰,字迹潦草到看不清楚的地步,乱涂乱改的结果使卷面很不整洁,在教师阅卷时容易造成误解扣分。

  二、对未见过的题目要充满信心:

  在每门课的`中考中,遇到一至几道未见过的,不会做的难题,这是正常现象;反之,如果一门课的题目,大家都会做,甚至都觉得很容易,这份考题就出糟了,它无法实现合理的区分度,。因此,考题中,若没有一些大家末曾见过的"难题",反而是不正常了不慌不躁,冷静应对在考试时难免有些题目一时想不出,千万不要钻牛角尖,因为所有试题包含的知识、能力要求都在考纲范围内,不妨先换一个题目做做,等一会儿往往就会豁然开朗了。综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。

  三、图形添线,必有规律

  这几年考试中,几何图形的辅助线集中在四方面:

  1、如果图形中有特殊点,如切点,斜边的中点,就要连结特殊线段,如经过切点的半径、斜边上的中线,等等;

  2、作垂线,构成直角三角形,便于计算;

  3、分割四边形,或延长一组对边,或平移线段,把四边形转化为三角形来研究。

  4、平行线

数学解题方法11

  高中数学解题的方法

  对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。

  第一阶段:理解问题是解题思维活动的开始。

  第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。

  第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

  第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

  数学解题的技巧

  为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

  一切解题的.策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

  基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  一、 熟悉化策略

  所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

  一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

  常用的途径有:

  (一)、充分联想回忆基本知识和题型:

  按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

  (二)、全方位、多角度分析题意:

  对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

  (三)恰当构造辅助元素:

  数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

  数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

  二、简单化策略

  所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

  简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

  因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

  高二数学解析几何训练题精选

  一、选择题:

  1、直线 的倾斜角是______。

  A. B. C. D.

  2、直线m、l关于直线x = y对称,若l的方程为 ,则m的方程为_____。

  A. B. C. D.

  3、已知平面内有一长为4的定线段AB,动点P满足PA—PB=3,O为AB中点,则OP的最小值为______ 。

  A.1 B. C.2 D.3

  4、点P分有向线段 成定比λ,若λ∈ ,则λ所对应的点P的集合是___。

  A.线段 B.线段 的延长线 C.射线 D.线段 的反向延长线

  5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。

  A.150° B.135° C.75° D.45°

  6、经过点A 且与直线 垂直的直线为______。

  A. B. C. D.

  7、经过点 且与直线 所成角为30°的直线方程为______。

  A. B. 或

  C. D. 或

  8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。

  A. B. C. D.

  9、两不重合直线 和 相互平行的条件是______。

  A. B. 或 C. D.

  10、过 且倾斜角为15°的直线方程为______。

  A. B. C. D.

数学解题方法12

  一、学习目标

  1.掌握负命题的解题技巧;

  2.掌握鲁宾逊定理,并能灵活运用。

  二、基础知识

  1.负命题就是否定某个命题的命题,又叫命题的否定。其联结项通常用“并非”或“非”表示,即“并非P或者非P”。

  在题目中,除了“并非…”之外,还有“并不是…,…是不对的,…是假的,…是错误的,…是荒谬的等”。

  2.鲁宾逊定理

  -(P→Q)=P且-Q

  -(P且-Q)=(P→Q)

  三、经典例题

  例1.小张承诺:如果天不下雨,我一定去听音乐会。

  以下哪项为真,说明小张没有兑现承诺?

  I天没下雨,小张没去听音乐会。

  II天下雨,小张去听了音乐会。

  III天下雨,小张没去听音乐会。

  A.仅I。

  B.仅II。

  C.仅III。

  D.仅I和II。

  E.I、II和III。

  【答案】A

  【解析】题干可翻译为“天不下雨→去听音乐会”。“小张没有兑现承诺”,意思就是对小张说的这句话进行否定,即对“天不下雨→去听音乐会”进行否定,根据鲁宾逊定理可得-(天不下雨→去听音乐会)=天不下雨,且没去听音乐会。所以,本题的正确选项为A。

  例2.麦老师:只有博士生导师才能担任学校“高级职称评定委员会”评委。

  宋老师:不对。董老师是博士生导师,但不是“高级职称评定委员会”评委。

  宋老师的回答说明他将麦老师的话错误地理解为()。

  A.有的`“高级职称评定委员会”评委是博士生导师。

  B.董老师应该是“高级职称评定委员会”评委。

  C.只要是博士生导师,就是“高级职称评定委员会”评委。

  D.并非所有的博士生导师都是“高级职称评定委员会”评委。

  E.董老师不是学科带头人,但他是博士生导师。

  【答案】C

  【解析】麦老师所说的话可以翻译为“评委→博导”;宋老师所说的话可以写成“博导且-评委”。根据鲁宾逊定理可知,宋老师所说的话是对“博导→评委”进行否定,也就是宋老师将麦老师的话理解为了“博导→评委”。逐一分析选项,A项“有的”,错误;B项,无关,错误;C项“博导→评委”,正确;D项“有的博士生导师不是高级职称评定委员会评委”,错误;E项无关,错误。所以,本题的正确选项是C。

数学解题方法13

  时间过得飞快,同学们一路踩着大大小小的测试,转眼就走到了年底。这个阶段,如何提高数学的解题能力,恐怕是大多数同学的心病。如何打开你们的心结,解放你们的时间呢?今天,我就给同学们传授一点数学的复习方法,帮助你们提高我们的数学解题能力。请那些急待数学成绩提高的同学做好笔记吧。

  数学在命题方面千变万化,知识点又非常容易综合穿插,所以,对那些不擅长整合知识、对数学概念缺乏理解的同学来讲,难免会感到数学很难。进入11月之后,玖久办公室接到的咨询电话陆续多起来,一些外地的家长都在帮助孩子寻找数学的复习方法和解题思维,希望能够提高孩子的数学学习能力,早日让孩子的数学成绩发生变化。汇总了一下同学和家长的咨询内容,基本上,问题都集中在这上面:在数学学科上投入很大精力,很努力,但是到头来,只会做老师讲过的题。考试的时候,题型稍微一变,马上就答不上来,非常让人着急......

  其实,数学是一个简单的学科,因为答案是唯一的,问题又非常明确,比其他学科都容易掌握,分数也更容易提高。那些认为数学难、遇到新题没思路、做了大量习题,收效却不大的同学其实还是没有抓到数学的学习窍门。从大的方面讲,是学生不懂得什么是学习?从小的.方面讲,是学生缺乏数学学习胃口,没有数学思路。学习是让我们发现一种内在的存在方式,思路是连接知识与问题之间的过程。如果你清楚了解这点,你会非常轻松,也会非常有方向。然后,你就会像阿基米德一样,发现这个世界。

  首先,你要培养三项能力:

  这三项能力对于数学成绩的高低起着关键性的作用,即:

  1、理解知识,知道知识是从哪里来的,要用到哪里去;

  2、善于分析,一道题目,能够快速找到可以利用的条件,对应前面的恰当知识;

  3、精于思维管理,思路灵活并且善于主动式思考,可以快速精准的解决问题。

  在形容这个解题能力的时候,曹老师举个很恰当的例子:一道题,给出我们一些条件,又给出我们一个目标。但是在目标和条件之间,还有一些空,需要我们去填补,怎样填补?用我们解决问题的思想,将自己理解的知识点填充在空白处。好,这道题你就做的很漂亮。其实学习和工作一样,跟我们应对生活中的任何问题都一样。我们可以回想一下,在我们遇到问题的时候,我们是不是都会率先抓住问题的要害(善抓重点的人,问题都处理的高效精准。相反,都一盘散沙)?抓住要害就等于抓住了目标,为了达成这个目标,我们首先数数当前我们拥有什么有利条件,接下来创造一些条件,完成目标。在数学题中,题目就是目标;有利条件就是已知条件;创造条件,就是利用解决问题的思维,找到的知识点。如果这样去看待问题,你还认为数学抽象吗?我常常对学生讲:学习不应该很辛苦,坚持、努力、鞠躬尽瘁、呕心沥血这些词语都带有痛苦的成份,不是最佳的学习方式。学习的光明境界是,了之一种内在的存在形式,找到究竟。当我们了之知识存在的形式之后,我们会与他们轻松相应,我们认识每个知识,他们也认识我们,这样的相处才很愉快。

  庄老师认为通过一定的方法训练数学思想,简化数学知识点的理解,数学知识是非常容易融汇贯通的。在解题思想上,通过不断寻找目标前提也就是必要性思维,是能够做到以不变应万变,大道无形。庄肃钦老师送给全国学生的数学感言数学,有着无穷的魅力!她具有音乐般的和谐、图画般的美丽、诗意般的境界;她赋予真理以生命,给我们思想增加光辉;她澄清智慧,涤尽有史以来的蒙昧和无知;平淡中见新奇,新奇中有艺术,这就是数学。我会和同学们一起,遨游数学之海洋、赏析数学之瑰丽、破解数学之谜题、享受数学之绝妙,在享受数学的道路上不断探索

  其次,我们要有一套训练有素的数学复习标准步骤,下面就让我们循着通往数学满分的路,看看如何驾驭自己的思想走上数学高分的捷径。

数学解题方法14

  数字变化类规律题解题技巧

  (1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘;

  (2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关;

  (3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来;

  (4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来;

  (5)同技巧(3)、(4)一样,有的`可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见;

  (6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

  数学找规律题的技巧

  标出序列号

  找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

  看增幅

  如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a1+(n-1)b。

  如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。

  总体思路

  从具体实际的问题出发,观察各个数量的特点及相互之间的变化规律;由此及彼,合理联想,大胆猜想;善于类比,从不同事物中发现相似或相同点;总结规律,得出结论,并验证结论正确与否;善于变化思维方式,做到事半功倍,探索规律是一种思维活动及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力,当已知的数据有很多组时,需要仔细观察,反复比较才能准确找出规律。

  找规律题的技巧方法

  先观察。做找规律题,拿到题目后,先不要着急做题,首先应该先去观察。主要是观察题目和题型,通过观察,揣摩下出题者的用意,有些简单的题,通过观察就可以得到想要的答案的。所以拿到题目时,先以观察为主,观察题目,观察数字,观察图画,能够从观察中找到答案那最好不过了。

  列条件。做找规律题,在观察完题目后,假如还是没有找到准确的答案,那就建议你要去学会列条件了。把题目已知的条件列出来,变着方式和方法去列,通过动手动笔,说不定你就能找到你想要的答案的。

  去比较。做找规律题,要学会去比较。比较就是比较题目的差异。特别是图画型找规律题,多花点心思去比较图画的异同点,从中找到对应的答案,比一比,说不定就把答案比出来了。

  大胆猜。做找规律题,要敢于大胆猜。有些题目,你看了半天也没有找到解题的思路或者是方法,也没有发现具体的规律,这个时候,建议你尝试去猜规律,猜了后再来一题一题的试,能够把题目试出来最好,假如试不出来,又再去猜一种规律,又再来试。

  用公式。做找规律题,要善于用公式。特别是在做一些数列题或者数字题的时候,有可能你观察半天都找不到规律,但是你去用相关的数学公式一套,多半就把规律套出来了。所以去记住一些数学公式也很重要。

  巧假设。做找规律题,要敢于去假设。有些题,要想找到规律,在必要的时候要学会去假设,假设条件,假设规律,假设结果,通过假设,说不定你就能找到题目的规律了。

  凭感觉。做找规律题,有时也需要凭感觉。在用尽了各种办法后,都还是把题目的规律摸不透,那就建议你要去凭感觉做题了。实在找不出规律,遇到选择题的话,就凭感觉去选一个,能不能做对,就完全看运气了。

数学解题方法15

  考研数学题型分为填空题、选择题、计算题三大类,而每类题型都有自己的特点、复习要点及注意事项,根据多年辅导经验及阅卷经历,现就考生关心的问题从以下三类题型一一分析:

  首先是填空题。在辅导中我们发现,很多同学填空题失分的原因并不是说真的题型有多难做,而是大家的运算准确率不够。填空题主要是考察基本运算和基本概念,或者说填空题比较多的是计算,这种填空题出的计算题题本身不难,方法我们一般同学都知道,但是一算就算错了,填空题只要是答案填错了就只能给0分。

  那么,很多同学要问了,该怎么提高这个运算准确率呢?这里,就要求同学平时复习的时候,不能光看会,就不去算,一定要亲自动手去做!平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。

  同时,由于填空题本身的特点,它是有一些特殊的方法和技巧的。大家在做这种题时如何还是按照常规,有的时候方法不当,本来很简单的`题做成了很复杂的题。有些题可以根据几何意义,结果一眼就看出来了,有些题是根据一些特殊的性质。我们在强化班讲课的时候,有意识跟同学做了归纳总结,听过课的同学对这个问题都应该有个总体的了解,这些方面应该是有帮助的。

  接下来是选择题,选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。

  解决办法就是需要同学们重视基础知识。既然,基本理论和基本概念是我们的薄弱环节,就必须在这下功夫,实际上它的选择题里边要考的东西往往就是我们原来的定义或者性质,或者一个定理这些内容的外延,所以我们复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了,平时在复习的时候要注意基本的概念和理论,本身有些题有难点,但是也不是说选择题有很多有难度的题,一般来说每年的卷子里边八道选择题里面一般有一两道是比较难的,剩下的相对都是比较容易的。

  这里还有一个技巧可以告诉大家,我们通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,我们考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧,我们在强化班讲课的时候也给同学做了归纳和总结,我想经过我们的讲解和同学们的努力这个地方应该可以做得很好。

  最后来说说计算题。计算题,在卷子里面是占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。在考卷里面经常看到同学丢分很重要的原因是运算的准确率比较差,所以对计算题刚才前面已经讲了,基本的运算必须要把它练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握这套方法,并且一定自己要实践,这个准确率提高不是看书就可以看得出来的,肯定是练出来的,所以要解决计算题准确率一定要通过一定量的练习。还有一类题就是证明题,应该说比较少,如果要出证明题比较多的是整个卷子里面最难的题,那就是难点。这个证明题都是在整个的内容里面经常有几个难点的地方是经常出题的地方,从复习的时候注意那几个经常出难题的地方的题的规律和方法,应该这个地方也不成大的问题。

【数学解题方】相关文章:

中考数学的实用解题技巧02-01

高一数学解题套路分享03-11

中考数学解题技巧与压轴题的解法04-12

看我解题绝招作文05-06

高一数学关于几何中求参数取值范围的解题技巧03-15

培养学生良好的解题习惯03-22

中考科学的解题技巧05-17

激情方特作文04-24

方特之旅作文05-01