初一数学知识点

时间:2024-11-01 18:13:07 初一 我要投稿

【合集】初一数学知识点

  在学习中,大家最不陌生的就是知识点吧!知识点也可以通俗的理解为重要的内容。还在为没有系统的知识点而发愁吗?下面是小编为大家收集的初一数学知识点,仅供参考,欢迎大家阅读。

【合集】初一数学知识点

初一数学知识点1

  一、整式

  1、单项式:表示数与字母的积的代数式。另外规定单独的一个数或字母也是单项式。

  单项式中的数字因数叫做单项式的系数。注意系数包括前面的符号,系数是1时通常省略, 是系数, 的系数是

  单项式的次数是指所有字母的指数的和。

  2、多项式:几个单项式的和叫做多项式。 (几次几项式)

  每一个单项式叫做多项式的项,注意项包括前面的符号。

  多项式的`次数:多项式中次数最高的项的次数。项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

  3、整式;单项式与多项式统称为整式。(最明显的特征:分母中不含字母)

  二、整式的加减:①先去括号; (注意括号前有数字因数)

  ②再合并同类项。 (系数相加,字母与字母指数不变)

  三、幂的运算性质

  1、同底数幂相乘:底数不变,指数相加。

  2、幂的乘方:底数不变,指数相乘。

  3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

  4、零指数幂:任何一个不等于0的数的0次幂等于1。 ( ) 注意00没有意义。

  5、负整数指数幂: ( 正整数, )

  6、同底数幂相除:底数不变,指数相减。 ( )

  注意:以上公式的正反两方面的应用。

  四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。

  五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

  六、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。

  七、平方差公式

  两数的和乘以这两数的差,等于这两数的平方差。

  即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。

  八、完全平方公式

  两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。

  常见错误:

  九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。

  十、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。

初一数学知识点2

  一、数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  二、相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的.两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  三、绝对值

  1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  初一数学必考知识点:有理数大小比较

  1.有理数的大小比较

  比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

  2.有理数大小比较的法则:

  ①正数都大于0;

  ②负数都小于0;

  ③正数大于一切负数;

  ④两个负数,绝对值大的其值反而小。

  规律方法·有理数大小比较的三种方法:

  (1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  (2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

  (3)作差比较:

  若a﹣b>0,则a>b;

  若a﹣b<0,则a

  若a﹣b=0,则a=b.

  初一数学必考知识点:相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

初一数学知识点3

  (一)有理数及其运算

  一、有理数的基础知识

  1、三个重要的定义:

  (1)正数:像1、2.5、这样大于0的数叫做正数;

  (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;

  (3)0即不是正数也不是负数.

  2、有理数的分类:

  (1)按定义分类:

  正整数整数0负整数有理数正分数分数负分数

  (2)按性质符号分类:

  正整数正有理数正分数有理数0

  负整数负有理数负分数3、数轴

  数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.

  4、相反数

  如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.

  5、绝对值

  (1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离

  (2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:

  (a0)aa0(a0)

  a(a0)

  (3)两个负数比较大小,绝对值大的反而小

  二、有理数的运算

  1、有理数的加法

  (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.

  (2)有理数加法的运算律:

  加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)

  用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。

  2、有理数的减法

  (1)有理数减法法则:减去一个数等于加上这个数的相反数.

  (2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.

  (3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;

  3、有理数的乘法

  (1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0

  (2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac

  (3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.

  4、有理数的除法

  有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.

  5、有理数的乘法

  (1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.

  (2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算

  (1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.

  (2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.(2)整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.

  n4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.

  6.同类项:所含字母相同,并且相同字母的'指数也相同的单项式是同类项

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列(3)一元一次方程

  一、方程的有关概念

  1、方程的概念:

  (1)含有未知数的等式叫方程.

  (2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.

  2、等式的基本性质:

  (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或ac=bc

  (2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或

  abcc

  (3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a

  (4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换

  二、解方程

  1、移项的有关概念:

  把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.

  2、解一元一次方程的步骤:(1)去分母等式的性质2

  注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.

  (2)去括号去括号法则、乘法分配律

  严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.

  (3)移项等式的性质1

  越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面

  (4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变

  (5)系数化为1等式的性质2

  两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒

  (6)检验

  二、列方程解应用题

  1、列方程解应用题的一般步骤:

  (1)将实际问题抽象成数学问题;

  (2)分析问题中的已知量和未知量,找出等量关系;

  (3)设未知数,列出方程;

  (4)解方程;

  (5)检验并作答.

  2、一些实际问题中的规律和等量关系:

  (1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围

  (2)几种常用的面积公式:

  长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;

  梯形面积公式:S=1(ab)h,a,b为上下底边长,h为梯形的高,S为梯形面积;22圆形的面积公式:Sr,r为圆的半径,S为圆的面积;三角形面积公式:S1ah,a为三角形的一边长,h为这一边上的高,S为三角形的2面积.

  (3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长

  (4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.

  (5)打折销售这类题型的等量关系是:利润=售价成本.

  (6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系.

  (7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.

  (8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程

  (9)关于储蓄中的一些概念:

  本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.

  (4)图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形

  平面图形:三角形、四边形、圆等.主(正)视图从正面看

  2、几何体的三视图侧(左、右)视图从左(右)边看

  俯视图从上面看

  (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型

  4、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念

  图形直线射线线段端点个数表示法作法叙述无直线a直线AB(BA)作直线AB;作直线a一个射线AB作射线AB反向延长射线AB两个线段a线段AB(BA)作线段a;作线段AB;连接AB延长线段AB;反向延长线段BA延长叙述不能延长2、直线的性质

  经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法

  (2)用尺规作图法

  4、线段的大小比较方法(1)度量法(2)叠合法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系

  (1)点在直线上(2)点在直线外.(三)角

  1、角:由公共端点的两条射线所组成的图形叫做角

  2、角的表示法(四种):

  3、角的度量单位及换算

  4、角的分类∠β范围锐角0<∠β<90°直角∠β=90°钝角90°

初一数学知识点4

  代数

  1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

  2.列代数式的几个注意事项(数学规范):

  (1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

  3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

  有理数

  1.有理数:

  1凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  2有理数的分类:①②

  3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  4自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:数轴是规定了原点、正方向、单位长度的.一条直线.

  3.相反数:

  1、只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  2、注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  3、相反数的和为0a+b=0a、b互为相反数.

初一数学知识点5

  第一章有理数

  1.有理数:

  (1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数,整数和分数统称有理数.p注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数正分数整数零

  (2)有理数的分类:

  ①有理数零

  ②有理数负整数负整数正分数负有理数分数负分数负分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:

  数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.(4)相反数的商为-1.

  (5)相反数的绝对值相等

  4.绝对值:

  (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  a(a0)a(a0)a(2)绝对值可表示为:a0(a0)或;a(a0)a(a0)(3)

  aa1a0;

  aa1a0;

  (4)|a|是重要的非负数,即|a|≥0,非负性;

  5.有理数比大小:

  (1)正数永远比0大,负数永远比0小;

  (2)正数大于一切负数;

  (3)两个负数比较,绝对值大的反而小;

  (4)数轴上的两个数,右边的数总比左边的数大;

  (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  6.倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  等于本身的数汇总:

  相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.

  7.有理数加法法则:X|k|b|1.c|o|m

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘;

  (2)任何数与零相乘都得零;

  (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。11有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.(简便运算)

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;

  (4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。

  0.120.01211

  (5)据规律2底数的小数点移动一位,平方数的小数点移动二位.10100222a0

  15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a

  16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.

  17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。

  18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。

  第二章整式的加减

  1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

  2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

  5.整式单项式多项式(整式是代数式,但是代数式不一定是整式)。

  6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)

  10.多项式的升幂和降幂排列:把一个多项式的.各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

  第三章一元一次方程

  1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:

  等式性质

  1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质

  2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.

  3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

  5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

  8.一元一次方程解法的一般步骤:化简方程----------分数基本性质

  去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)

  合并同类项--------合并后符号系数化为1---------除前面

  9.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  10.列方程解应用题的常用公式:

  (1)行程问题:路程=速度时间速度路程路程时间;时间速度工作量工作量工时;工时工效

  (2)工程问题:工作量=工作效率工作时间工效工程问题常用等量关系:先做的+后做的=完成量

  (3)顺水逆水问题:

  顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程

  (4)商品利润问题:售价=定价几折售价成本,利润率100%;成本10利润问题常用等量关系:售价-进价=利润

  (5)配套问题:

  (6)分配问题

  第四章图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形平面图形:三角形、四边形、圆、多边形等.

  主视图---------从正面看

  2、几何体的三视图左视图---------从左边看俯视图---------从上面看

  (1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.

  4、点、线、面、体

  (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.

  (二)直线、射线、线段

  1、基本概念名称直线射线线段aaa图形ABBBAA端点个数表示法作法叙述延长无直线a直线AB(BA)作直线a作直线AB;向两端无限延长一个射线a射线AB作射线a作射线AB向一端无限延长两个线段a线段AB(BA)作线段a;作线段AB;连接AB不可延长

  2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的长短比较方法

  (1)度量法

  (2)叠合法

  (3)圆规截取法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=

  6、线段的性质

  1AB,AB=2AM=2BM.

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.

  7、两点的距离

  连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身)

  8、点与直线的位置关系

  (1)点在直线上(或者直线经过点)

  (2)点在直线外(或者直线不经过点).

  (三)角

  1、角:有公共端点的两条射线所组成的图形叫做角.

  2、角的表示法(四种):表示方法图例记法适用范围A任何情况下都适应。表示端O用三个大写字母表示AOB或BOAB点的字母必须写在中间。以这个点为顶点的角只有用一个大写字母表示AA一个。任何情况下都适用。但必须用数字表示11在靠近顶点处加上弧线表示角的范围,并注上数字或用希腊字母表示希腊字母。

  3、角的度量单位及换算(度””、分””、秒””)60进制1=60=3600,1=60;1=(4、角的分类∠β范围锐角直角钝角0<∠β<90°∠β=90°90°

初一数学知识点6

  1、 代数式:

  用运算符号(加、减、乘、除、乘方、开方)把( ) 或表示( )连接而成的式子叫做代数式、

  2、 代数式的值:

  用( )代替代数式里的字母,按照代数式里的运算关系,计算后所得的( )叫做代数式的值、

  3、 整式

  (1)单项式:

  由数与字母的( )组成的代数式叫做单项式(单独一个数或( )也是单项式)、单项式中的( )叫做这个单项式的系数;单项式中的所有字母的( )叫做这个单项式的次数、

  (2) 多项式:

  几个单项式的( )叫做多项式、在多项式中,每个单项式叫( )做多项式的( ),其中次数最高的`项的( )叫做这个多项式的次数、不含字母的项叫做

  (3) 整式:

  ( )与( )统称整式

  4、 同类项:

  在一个多项式中,所含( )相同并且相同字母的( )也分别相等的项叫做同类项、 合并同类项的法则是( )。

  5、 整式的除法

  ⑴ 单项式除以单项式的法则:把( ) 、( )分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式、

  ⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以( ),再把所得的商( )

初一数学知识点7

  整式加减

  单项式与多项式统称为整式。整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式都统称为整式。把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。分解因式与整式乘法为相反变形。

  (1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。

  (2)多项式:几个单项式的和叫做多项式

  本文导航1、首页2、整式的乘法3、整式的除法

  整式的乘法

  1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的.错误的是,将系数相乘与指数相加混淆;

  ②相同字母相乘,运用同底数的乘法法则;

  ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  ④单项式乘法法则对于三个以上的单项式相乘同样适用;

  ⑤单项式乘以单项式,结果仍是一个单项式。

  2.单项式与多项式相乘

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  单项式与多项式相乘时要注意以下几点:

  ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  ②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  ③在混合运算时,要注意运算顺序。

  3.多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

  本文导航1、首页2、整式的乘法3、整式的除法

  整式的除法

  1.单项式除法单项式

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  2.多项式除以单项式

  多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

初一数学知识点8

  1、用不等号表示不等关系的式子叫不等式,不等号主要包括: 、 、 、 、 。

  2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。

  不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

  3、不等式的性质:

  ①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

  用字母表示为: 如果 ,那么 ; 如果 ,那么

  如果 ,那么 ; 如果 ,那么 。

  ②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

  用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

  如果 ,那么 (或 );如果 ,那么 (或 );

  ③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

  用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

  如果 ,那么 (或 );如果 ,那么 (或 );

  4、解一元一次不等式的一般步骤:

  ①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

  5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。

  使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的.所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

  6、解一元一次不等式组的一般步骤:

  ①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

  7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

初一数学知识点9

  第一章:有理数

  ★0既不是正数,也不是负数。0是正数和负数的分界。★整数的概念:正整数、0、负整数统称为整数。★分数的概念:正负数和负分数统称为分数。★有理数的概念:整数和分数统称为有理数。

  ★数轴的概念:规定了原点、正方向、单位长度的一条直线叫数轴。

  (1)在直线上任意取一点表示数0,这个点叫做原点;

  (2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,

  依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3。

  ★相反数的概念:只有符号不同的两个数叫做互为相反数。0的相反数是0。互为相反数的两个点关于原点对称。

  ★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。记作a。

  由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  ★有理数比较大小:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。所以由这个规定可知:(1)正数大于0,0大于负数;正数大于负数;(2)两个负数,绝对值大的反而小。

  备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。

  ★有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加。

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3、一个数同0相加,仍是这个数。

  ★有理数的加法中,两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a.★有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。【结合原则:同号结合;同分母结合;互为相反数结合;凑整结合。】

  ★有理数减法法则:减去一个数,就等于加上这个数的相反数。即:a-b=a+(-b).

  ★有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

  备注:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ★有理数中仍然有:乘积是1的两个数互为倒数。

  ★一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变。乘法交换率:abba;三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)ca(bc)。

  ★一般地,一个数同两个数的和相乘,等于把这个数分别同中两个数相乘,再把积相加。分配律:a(bc)abac

  ★有理数除法法则:除以一个不等于0的数,等于乘上这个数的倒数。

  备注:从有理数除法法则容易得出:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  ★有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a的n次方也可以读作a的n次幂。

  备注:负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数。0的任何正整数次幂都是0。

  ★有理数的混合运算,应注意以下运算顺序:先乘方,再乘除,最后加减。2。同级运算,从左到右依次计算。3。如有括号,先做括号内的运算,按小括号、中括号、大括号依次计算。

  ★科学计数法:把一个大于10的数表示成ax10(其中a是整数数位只有一位的数,n是正整数)

  ★近似数与准确数的接近程度,可以用精确度表示。

  ★有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

  第二章:整式的加减(为一元一次方程的学习打下基础)

  ◆单项式概念:比如100t、a的平方、2.5x、vt,-n,它们都是数或者字母的积,像这样的式子叫做单项式。单独的一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。

  ◆一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  ◆多项式的概念:几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不存在字母的项叫做常数项。

  ◆多项式里次数最高项的次数,叫做这个多项式的次数。◆整式的概念:单项式与多项式统称整式。

  ◆同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。

  ◆把多项式中的同类项合并成一项,叫做合并同类项。

  ◆合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母部分不变。◆去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的'因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  第三章:一元一次方程

  ▲含有未知数的等式叫方程(equation)。

  ▲使方程左右两边相等的未知数的值,叫做方程的解(solution)。▲只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。▲等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。

  2、等式;两边乘同一个数,或除以同一个不为0的数,结果仍相等。▲用一元一次方程分析和解决实际问题的基本过程如下:

  (实际问题)设未知数,列方程数学问题(一元一次方程)解方程(数学问题的解)检验(实际问题的答案)。

  ▲解方程的具体步骤:1、去分母(方程两边同乘各分母的最小公倍数);2、去括号(去括号法则);3、移项(定义);4、合并同类项(法则,同类项的定义);5、系数化为1。

  ▲实际问题与一元一次方程:一元一次方程是最简单的方程。运用方程解决问题的关键是分析问题中的数量关系,找出其中的相等关系,并由此列出方程。

  第四章:图形认识的初步

  ※我们把从实物中抽象出的各种图形统称为几何图形。几何图形是数学研究的主要对象

  之一。几何图形又分为立体图形和平面图形。

  ※长方体、正方体、圆柱、圆锥、球、棱锥等都是几何体。几何体也简称体(solid)。包围着体的是面(surface)。面有平面和曲面。

  ※几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。※经过两点有一条直线,并且只有一条直线。简述:两点确定一条直线。※直线一般用1个小写字母表示或者用直线上的两个大写字母表示。※射线和线段都是直线的一部分。类似于直线的表示。

  ※两点的所有连线中,线段最短。简述:两点之间,线段最短。※连接两点间的线段的长度,叫做中两点的距离(distance)。

  ※在国际单位制中,长度的基本单位是米(m)。常用的单位还有千米、分米、厘米、毫米、微米等。

  1纳米等于十亿分之一米。

  ※在天文学上,常用天文单位和光年计算星体间的距离。1天文单位是地球到太阳的平812

  均距离,约1.5x10千米,1光年就是光1年走过的距离,约等于9.46x10千米。

  ※航海上经常用到的长度单位海里(1海里=1852米);※有公共端点的两条射线组成的图形叫做角(angle)。这个公共点叫做角的顶点,这两条射线是角的两条边。

  ※我们常用量角器量角,度(degree)、分、秒是常用的角的度量单位。

  ※角的度、分、秒是60进制的。以度、分、秒为单位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的经纬仪。

  ※从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

  ※余角(complementaryangle):如果两个角的和等于90度(直角),就说中这两个角互为余角,即其中每一个角是另一个角的余角。余角的性质:等角的余角相等。

  ※补角(supplementaryangle):如果两个角的和等于180度(平角),就说这两个角互为补角,其中一个角是另一个角的补角。补角的性质:等角的补角相等。

  ※上北下南;左西右东。西北,即是北偏西45度。

  第五章平行线与相交线

  一.台球桌面上的角

  ※1.互为余角和互为补角的有关概念与性质

  如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;

  注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

  它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。

  二.探索直线平行的条件

  ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。

  三.平行线的特征

  ※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

  四.用尺规作线段和角※

  1.关于尺规作图

  尺规作图是指只用圆规和没有刻度的直尺来作图。

  ※2.关于尺规的功能

  直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

  圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

初一数学知识点10

  正数和负数

  ⒈正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2.具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

  零上8℃表示为:+8℃;零下8℃表示为:-8℃

  3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

  ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

  (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

  有理数

  1.有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

  ⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。3,整数也能化成分数,也是有理数

  注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。

  2.有理数的分类

  ⑴按有理数的意义分类⑵按正、负来分正整数

  整数0正有理数正分数

  有理数有理数0(0不能忽视)

  负整数

  分数负有理数负分数

  总结:①正整数、0统称为非负整数(也叫自然数)

  ②负整数、0统称为非正整数

  ③正有理数、0统称为非负有理数

  ④负有理数、0统称为非正有理数

  数轴

  ⒈数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

  可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

  2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4.数轴上特殊的(小)数

  ⑴最小的自然数是0,无的自然数;

  ⑵最小的正整数是1,无的正整数;

  ⑶的负整数是-1,无最小的负整数

  5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,,则a=0

  相反数

  ⒈相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:⑴相反数是成对出现的';⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2.相反数的性质与判定

  ⑴任何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3.相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4.相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

  ⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

  ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化

  简得5)

  5.相反数的表示方法

  ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,-a<0(正数的相反数是负数)

  当a<0时,-a>0(负数的相反数是正数)

  当a=0时,-a=0,(0的相反数是0)

  绝对值

  ⒈绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2.绝对值的代数定义

  ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

  可用字母表示为:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

  如数轴所示,化简下列各数

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.绝对值的性质

  任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  ⑶任何数的绝对值都不小于原数。即:|a|≥a;

  ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  经典考题

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  4.有理数大小的比较

  ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

  ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数

  大于负数。

  5.绝对值的化简

  ①当a≥0时,|a|=a;②当a≤0时,|a|=-a

  6.已知一个数的绝对值,求这个数

  一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。如:|a|=5,则a=土5

  有理数的加减法

  1.有理数的加法法则

  ⑴同号两数相加,取相同的符号,并把绝对值相加;

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;

  ⑷一个数与零相加,仍得这个数。

  2.有理数加法的运算律

  ⑴加法交换律:a+b=b+a

  ⑵加法结合律:(a+b)+c=a+(b+c)

  在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

  ①互为相反数的两个数先相加——“相反数结合法”;

  ②符号相同的两个数先相加——“同号结合法”;

  ③分母相同的数先相加——“同分母结合法”;

  ④几个数相加得到整数,先相加——“凑整法”;

  ⑤整数与整数、小数与小数相加——“同形结合法”。

  3.加法性质

  一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:

  ⑴当b>0时,a+b>a⑵当b<0时,a+b

  4.有理数减法法则

  减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。

  5.有理数加减法统一成加法的意义

  在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

  在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

  和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”

  ②按运算意义读作“负8减7减6加5”

  6.有理数加减混合运算中运用结合律时的一些技巧:

  Ⅰ.把符号相同的加数相结合(同号结合法)

  (-33)-(-18)+(-15)-(+1)+(+23)

  原式=-33+(+18)+(-15)+(-1)+(+23)(将减法转换成加法)

  =-33+18-15-1+23(省略加号和括号)

  =(-33-15-1)+(18+23)(把符号相同的加数相结合)

  =-49+41(运用加法法则一进行运算)

  =-8(运用加法法则二进行运算)

  Ⅱ.把和为整数的加数相结合(凑整法)

  (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)

  原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法)

  =6.6-5.2+3.8-2.6-4.8(省略加号和括号)

  =(6.6-2.6)+(-5.2-4.8)+3.8(把和为整数的加数相结合)

  =4-10+3.8(运用加法法则进行运算)

  =7.8-10(把符号相同的加数相结合,并进行运算)=-2.2(得出结论)

  Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)313217-+-+-524528

  321137原式=(--)+(-+)+(+-)552248

  1=-1+0-8

  1=-18-

  Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)312)+(-3)-(-10)-(+1.25)483

  13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834

  13121=+3-3+10-184834

  31112=(3-1)+(-3)+1044883

  12=2-3+1023

  1=-3+136

  1=106(+0.125)-(-3

  Ⅴ.把带分数拆分后再结合(先拆分后结合)-31617+10-12+45112215

初一数学知识点11

  1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。

  2、内角:四个角都是90°;

  3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;

  4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。

  5、正方形具有平行四边形、菱形、矩形的一切性质。

  6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的`等腰直角三角形。

  7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。

初一数学知识点12

  二元一次方程式的理解及练习:

  1.二元一次方程:含有( )未知数(元)并且未知数的次数是( )的整式方程.

  2. 二元一次方程组:由2个或2个以上的( )组成的方程组叫二元一次方程组.

  3.二元一次方程的解: 适合一个二元一次方程的( )未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有( )个解.

  4.二元一次方程组的解: 使二元一次方程组的( ),叫做二元一次方程组的解.

  5. 解二元一次方程的方法步骤:

  消元是解二元一次方程组的基本思路,方法有( )消元和 ( )消元法两种.

  6.易错知识辨析:

  (1)二元一次方程有无数个解,它的解是一组未知数的值;

  (2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;

  (3)利用加减法消元时,一定注意要各项系数的符号.

  例2某厂工人小王某月工作的部分信息如下:

  信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元;

  信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.

  生产产品件数与所用时间之间的`关系见下表:

  生产甲产品件数(件) 生产乙产品件数(件) 所用总时间(分)

  10 10 350

  30 20 850

  信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:

  (1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?

  (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?

  7. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?

  8. 某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.

  ① 求该同学看中的随身听和书包单价各是多少元?

  ② 某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?

初一数学知识点13

  二元一次方程组

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列

  易解”;

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知

  数的关系.

  一元一次不等式(组)

  1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

  3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不

  博源教育曾老师1378780036612

  等式的解集.

  4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).

  5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质

  3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

  6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;

  注意:ab>0

  abab0a0b0或a0b0;

  amamab<0

  0a0b0或a0b0;ab=0a=0或b=0;a=m.

  7.一元一次不等式组的.解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.

  8.一元一次不等式组的解集的四种类型:设a>b

  xaxb不等式组的解集xaxb是xa不等式的组解集是xbba>ba>xaxb不等式组的解集是axbxaxb不等式组解集是空集ba>xy0x、y是正数xy0ba>,

  9.几个重要的判断:,

  xy0x、y是负数xy0xy0x、y异号且正数绝对值大,xy0-2-

  xy0x、y异号且负数绝对值大xy0.博源教育曾老师1378780036613

  整式的乘除

  1.同底数幂的乘法:aman=am+n,底数不变,指数相加.

  2.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:

  (1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:

  ①(a+b)=a+2ab+b,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

  p(1)若二次三项式x+px+q是完全平方式,则有关系式:22

  222

  2q;

  (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax+bx+c值的符号;②当x=h时,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22

  21x21xx22.

  8.同底数幂的除法:am÷an=am-n,底数不变,指数相减.9.零指数与负指数公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0).注意:00,0-2无意义;

  博源教育曾老师1378780036614

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.

  10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.

  11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.

  ※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线

  几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

  1.角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)OA几何表达式举例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:几何表达式举例:(1)∵C是AB中点∴AC=BCCB点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)A(2)∵AC=BC∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.几何表达式举例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

  博源教育曾老师137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:∵a=cb=c∴a=b5.补角重要性质:同角或等角的补角相等.(如图)13几何表达式举例:∵a=cb=d又∵c=d∴a=b几何表达式举例:∵a=c+db=c+d∴a=b几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)几何表达式举例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老师1378780036616∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)CAOBD几何表达式举例:∵∠AOC=∠DOB∴8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)AC几何表达式举例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)ACEBDF几何表达式举例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)

  -6-

  几何表达式举例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老师1378780036617(3)若同旁内角互补,两条直线平行.(如图)11.平行线性质定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD几何表达式举例:(1)∵AB∥CD(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

  一基本概念:

  直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:

  1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.

  3.有关垂线的定理:

  (1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

  博源教育曾老师1378780036618

  三公式:

  直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常识:

  1.定义有双向性,定理没有.

  2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.

  3.命题可以写为“如果那么”的形式,“如果”是命题的条件,“那么”是命题的结论.

  4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.

  6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:

初一数学知识点14

  有理数的乘方

  (1)求相同因数的积的`运算叫做乘方.乘方运算的结果叫幂.

  一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

  (2)正数的任何次幂都是正数.

  负数的奇数次幂是负数,

  负数的偶数次幂是正数.

  (3)一个数的平方为它本身,这个数是0和1;

  一个数的立方为它本身,这个数是0、1和-1。

初一数学知识点15

  一、知识总结

  (一)平方根与立方根

  1、平方根

  (1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。

  (2)表示:非负数a的平方根记作± ,读作“正负根号a”,(a叫做被开方数)

  (3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。

  (4)开平方:求平方根的运算叫做开平方。

  Ⅰ、平方根是开平方的结果;Ⅱ、 开平方与平方互为逆运算。

  2、算术平方根

  (1)定义:正数a的正的平方根a叫做a的算术平方根,0的算术平方根是0。

  (2)性质:(1)一个数a的算术平方根具有非负性; 即:a≥0恒成立。

  (2)正数的算术平方根只有1个,且为正数;0的算术平方根是0; 负数的没有算术平方根。

  3、立方根:

  (1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做三次方根。

  (2)表示:a的立方根记作a,读作“三次根号a”(a叫做被开方数,3叫根指数)

  (3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。

  (二)实数

  1、无理数:无限不循环的小数。(一个无理数与若干有理数之间的运算结果还是无理数)

  2、实数:有理数和无理数统称为实数。

  3、实数分类:(1)按定义分(略) (2)按正负性分(略)

  4、实数与数轴上的点一一对应。

  5、实数的相反数、绝对值、倒数:(与有理数的相反数、绝对值、倒数意义类似)

  6、实数的运算:实数与有理数一样,可以进行加、减、乘、除、乘方运算,正数及零可以进行开平方运算,任意一个实数可以进行开立方运算,而且有理数的运算法则和运算律对于实数仍然适用。

  7、实数大小:(1)正数>0 >负数; (2)两个负数相比,绝对值大的反而小;绝对值小的反而大。(3)数轴上不同的点表示的数,右边点表示的数总比左边的点表示的数大。 实数比较大小的方法:作差法、平方法、作商法、倒数法、估值法

  第七章 一元一次不等式与不等式组

  一、知识总结

  (一)不等式及其性质

  1、不等式:

  (1)定义用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.

  (2)不等式的解:能使不等式成立的`未知数的值,叫做不等式的解。

  (3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。

  不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。

  二者的关系是:解集包括解,所有的解组成了解集。

  (4)解不等式:求不等式解的过程叫做解不等式。

  2、不等式的基本性质

  性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 即:如果a?b,那么a?c?b?c.

  性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。 即:如果a?b,并且c?0,那么ac?bc;ab?. cc

  性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。 即:如果a?b,并且c?0,那么ac?bc;ab?. cc

  性质4:如果a?b,那么b?a.(对称性)

  性质5:如果a?b,b?c,那么a?c.(传递性)

  (二)一元一次不等式

  1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式, 叫做一元一次不等式。

  2.一元一次不等式的解法:

  根据是不等式的基本性质;一般步骤为:(1)去分母;(2)去括号;(3)移项;

  (4)合并同类项;(5)系数化为1.

  解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。

  3.不等式的解集在数轴上表示:

  (1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左

  (三)一元一次不等式组

  1、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组

  2、(一元一次)不等式组的解集:这几个不等式解集的公共部分,叫做这个(一元一次)不等式组的解集。

  3、解不等式组:求不等式组解集的过程,叫做解不等式组。 4、一元一次不等式组的解法

  1)分别求出不等式组中各个不等式的解集

  2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

  (四)一元一次不等式(组)解决实际问题

  解题的步骤:

  ⑴审题,找出不等关系→ ⑵设未知数→ ⑶列出不等式(组)→

  ⑷求出不等式的解集→ ⑸找出符合题意的值→ ⑹作答。

【初一数学知识点】相关文章:

数学初一知识点总结07-04

初一数学知识点04-18

初一数学必考的知识点11-16

初一数学重要知识点10-08

初一数学知识点11-01

初一数学知识点的总结11-07

初一数学苏教版知识点总结09-30

初一数学棱柱的性质知识点09-12

初一数学角知识点讲解07-12

初一数学下知识点总结12-07