初一数学知识点总结

时间:2024-10-29 15:29:27 初一 我要投稿

【合集】初一数学知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,我想我们需要写一份总结了吧。那么如何把总结写出新花样呢?以下是小编整理的初一数学知识点总结,希望能够帮助到大家。

【合集】初一数学知识点总结

初一数学知识点总结1

有理数及其运算板块:

  1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。

  2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

  3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

  整式板块:

  1、单项式:由数与字母的乘积组成的式子叫做单项式。

  2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  3、整式:单项式与多项式统称整式。

  4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

  一元一次方程:

  1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

  2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

  其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

  大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分

  三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)

  数轴的三要素:

  原点、正方向、单位长度(三者缺一不可)。

  任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)

  在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

  数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

  绝对值的定义:

  一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。

  正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

  绝对值的性质:

  除0外,绝对值为一正数的数有两个,它们互为相反数;

  互为相反数的两数(除0外)的绝对值相等;

  任何数的绝对值总是非负数,即|a|0

  比较两个负数的'大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

  ①先求出两个数负数的绝对值;

  ②比较两个绝对值的大小;

  ③根据两个负数,绝对值大的反而小做出正确的判断。

  绝对值的性质:

  ①对任何有理数a,都有|a|0

  ②若|a|=0,则|a|=0,反之亦然

  ③若|a|=b,则a=b

  ④对任何有理数a,都有|a|=|—a|

  有理数加法法则:

  ①同号两数相加,取相同符号,并把绝对值相加。

  ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

  ③一个数同0相加,仍得这个数。

  加法的交换律、结合律在有理数运算中同样适用。

  灵活运用运算律,使用运算简化,通常有下列规律:

  ①互为相反的两个数,可以先相加;

  ②符号相同的数,可以先相加;

  ③分母相同的数,可以先相加;

  ④几个数相加能得到整数,可以先相加。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法运算时注意两变:

  ①改变运算符号;

  ②改变减数的性质符号(变为相反数)

  有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。

  有理数的加减法混合运算的步骤:

  ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

  ②利用加法则,加法交换律、结合律简化计算。

  (注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)

  有理数乘法法则:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘,积仍为0。

  如果两个数互为倒数,则它们的乘积为1。

  乘法的交换律、结合律、分配律在有理数运算中同样适用。

  有理数乘法运算步骤:①先确定积的符号;

  ②求出各因数的绝对值的积。

  乘积为1的两个有理数互为倒数。注意:

  ①零没有倒数

  ②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。

  ③正数的倒数是正数,负数的倒数是负数。

  有理数除法法则:

  ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

  ②0除以任何非0的数都得0。0不可作为除数,否则无意义。

  有理数的乘方

  注意:

  ①一个数可以看作是本身的一次方,如5=51;

  ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

  乘方的运算性质:

  ①正数的任何次幂都是正数;

  ②负数的奇次幂是负数,负数的偶次幂是正数;

  ③任何数的偶数次幂都是非负数;

  ④1的任何次幂都得1,0的任何次幂都得0;

  ⑤—1的偶次幂得1;—1的奇次幂得—1;

  ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

  有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

  ②如果有括号,先算括号里面的。

初一数学知识点总结2

  初一下册知识点总结

  1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。

  2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

  4.零指数与负指数公式:

  (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

  (2)完全平方公式:

  ① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

  ② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

  ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

  ※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

  注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

  ※(3)注意: 。

  7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的`个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  10.合并同类项法则:系数相加,字母与字母的指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  平面几何部分

  1、补角重要性质:同角或等角的补角相等.

  余角重要性质:同角或等角的余角相等.

  2、①直线公理:过两点有且只有一条直线.

  线段公理:两点之间线段最短.

  ②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

  比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

  3、三角形的内角和等于180

  三角形的一个外角等于与它不相邻的两个内角的和

  三角形的一个外角大于与它不相邻的任何一个内角

  4、n边形的对角线公式:

  各个角都相等,各条边都相等的多边形叫做正多边形

  5、n边形的内角和公式:180(n-2); 多边形的外角和等于360

  6、判断三条线段能否组成三角形:

  ①a+b>c(a b为最短的两条线段)②a-b

  7、第三边取值范围:

  a-b< c

  8、对应周长取值范围:

  若两边分别为a,b则周长的取值范围是 2a

  如两边分别为5和7则周长的取值范围是 14

  9、相关命题:

  (1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

  (2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。

  (3)任意一个三角形两角平分线的夹角=90+第三角的一半。

  (4) 钝角三角形有两条高在外部。

  (5) 全等图形的大小(面积、周长)、形状都相同。

  (6) 面积相等的两个三角形不一定是全等图形。

  (7) 三角形具有稳定性。

  (8) 角平分线到角的两边距离相等。

  (9)有一个角是60的等腰三角形是等边三角形。

初一数学知识点总结3

  1、单项式:数字与字母的积,叫做单项式。

  2、多项式:几个单项式的和,叫做多项式。

  3、整式:单项式和多项式统称整式。

  4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

  5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

  6、余角:两个角的和为90度,这两个角叫做互为余角。

  7、补角:两个角的和为180度,这两个角叫做互为补角。

  8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

  9、同位角:在“三线八角”中,位置相同的角,就是同位角。

  10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

  11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

  12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

  13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

  14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  15、三角形的角平分线:在三角形中,一个内角的角平分线与它的`对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

  17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  18、全等图形:两个能够重合的图形称为全等图形。

  19、变量:变化的数量,就叫变量。

  20、自变量:在变化的量中主动发生变化的,变叫自变量。

  21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

  22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

  23、对称轴:轴对称图形中对折的直线叫做对称轴。

  24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

初一数学知识点总结4

  第一章有理数

  1.有理数:

  (1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数,整数和分数统称有理数.p注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数正分数整数零

  (2)有理数的分类:

  ①有理数零

  ②有理数负整数负整数正分数负有理数分数负分数负分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:

  数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.(4)相反数的商为-1.

  (5)相反数的绝对值相等

  4.绝对值:

  (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  a(a0)a(a0)a(2)绝对值可表示为:a0(a0)或;a(a0)a(a0)(3)

  aa1a0;

  aa1a0;

  (4)|a|是重要的非负数,即|a|≥0,非负性;

  5.有理数比大小:

  (1)正数永远比0大,负数永远比0小;

  (2)正数大于一切负数;

  (3)两个负数比较,绝对值大的反而小;

  (4)数轴上的两个数,右边的数总比左边的数大;

  (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  6.倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  等于本身的数汇总:

  相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.

  7.有理数加法法则:X|k|b|1.c|o|m

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘;

  (2)任何数与零相乘都得零;

  (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。11有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.(简便运算)

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;

  (4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。

  0.120.01211

  (5)据规律2底数的小数点移动一位,平方数的小数点移动二位.10100222a0

  15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a

  16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.

  17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。

  18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。

  第二章整式的加减

  1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

  2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

  5.整式单项式多项式(整式是代数式,但是代数式不一定是整式)。

  6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)

  10.多项式的`升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

  第三章一元一次方程

  1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:

  等式性质

  1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质

  2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.

  3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

  5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

  8.一元一次方程解法的一般步骤:化简方程----------分数基本性质

  去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)

  合并同类项--------合并后符号系数化为1---------除前面

  9.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  10.列方程解应用题的常用公式:

  (1)行程问题:路程=速度时间速度路程路程时间;时间速度工作量工作量工时;工时工效

  (2)工程问题:工作量=工作效率工作时间工效工程问题常用等量关系:先做的+后做的=完成量

  (3)顺水逆水问题:

  顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程

  (4)商品利润问题:售价=定价几折售价成本,利润率100%;成本10利润问题常用等量关系:售价-进价=利润

  (5)配套问题:

  (6)分配问题

  第四章图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形平面图形:三角形、四边形、圆、多边形等.

  主视图---------从正面看

  2、几何体的三视图左视图---------从左边看俯视图---------从上面看

  (1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.

  4、点、线、面、体

  (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.

  (二)直线、射线、线段

  1、基本概念名称直线射线线段aaa图形ABBBAA端点个数表示法作法叙述延长无直线a直线AB(BA)作直线a作直线AB;向两端无限延长一个射线a射线AB作射线a作射线AB向一端无限延长两个线段a线段AB(BA)作线段a;作线段AB;连接AB不可延长

  2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的长短比较方法

  (1)度量法

  (2)叠合法

  (3)圆规截取法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=

  6、线段的性质

  1AB,AB=2AM=2BM.

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.

  7、两点的距离

  连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身)

  8、点与直线的位置关系

  (1)点在直线上(或者直线经过点)

  (2)点在直线外(或者直线不经过点).

  (三)角

  1、角:有公共端点的两条射线所组成的图形叫做角.

  2、角的表示法(四种):表示方法图例记法适用范围A任何情况下都适应。表示端O用三个大写字母表示AOB或BOAB点的字母必须写在中间。以这个点为顶点的角只有用一个大写字母表示AA一个。任何情况下都适用。但必须用数字表示11在靠近顶点处加上弧线表示角的范围,并注上数字或用希腊字母表示希腊字母。

  3、角的度量单位及换算(度””、分””、秒””)60进制1=60=3600,1=60;1=(4、角的分类∠β范围锐角直角钝角0<∠β<90°∠β=90°90°

初一数学知识点总结5

  第一章整式的运算

  一、单项式、单项式的次数:

  只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  二、多项式

  1、多项式、多项式的次数、项

  几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  三、整式:单项式和多项式统称为整式。

  四、整式的加减法:

  整式加减法的一般步骤:(1)去括号;(2)合并同类项。五、幂的运算性质:1、同底数幂的乘法:a

  2、幂的乘方:3、积的乘方:

  4、同底数幂的除法:

  六、零指数幂和负整数指数幂:1、零指数幂:2、负整数指数幂:

  七、整式的乘除法:

  1、单项式乘以单项式:

  法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

  2、单项式乘以多项式:

  法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  3、多项式乘以多项式:

  多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  4、单项式除以单项式:

  单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

  5、多项式除以单项式:

  多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  八、整式乘法公式:

  1、平方差公式:2、完全平方公式:

  第二章平行线与相交线

  一、余角和补角:

  1、余角:

  定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。2、补角:

  定义:如果两个角的和是平角,那么称这两个角互为补角。

  性质:同角或等角的补角相等。

  二、对顶角:

  我们把两条直线相交所构成的四个角中,有公共顶点且角的`两边互为反向延长线的两个角叫做对顶角。

  对顶角的性质:对顶角相等。

  三、同位角、内错角、同旁内角:

  直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

  四、平行线的判定:

  1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

  2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

  3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

  补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。

  五、平行线的性质:

  (1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。

  六、尺规作图:

  1、作一条线段等于已知线段。2、作一个角等于已知角。

  第三章生活中的数据

  一、科学记数法:

  一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。

  二、近似数和有效数字:

  1、近似数:

  利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

  2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。

  三、形象统计图:

  第四章概率

  一、事件发生的可能性;

  人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

  二、游戏是否公平:

  游戏对双方公平是指双方获胜的可能性相同。三、摸到红球的概率:1、概率的意义

  P(摸到红球=

  摸到红球可能出现的结果数

  摸出一球可能出现的结果数2、确定事件和不确定事件的概率:

  (1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0

  (2)三角形按角分类:

  直角三角形(有一个角为直角的三角形)

  三角形锐角三角形(三个角都是锐角的三角形)斜三角形

  钝角三角形(有一个角为钝角的三角形)

  把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  7、三角形的三种重要线段:(1)三角形的角平分线:

  定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:

  定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的高线:

  定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

  8、三角形的面积:

  三角形的面积=

  1×底×高2二、全等图形:

  定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形

  1、全等三角形及有关概念:

  能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  2、全等三角形的表示:

  全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:

  (1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

  (2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:

  对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

  第六章变量之间的关系

  1、变量、自变量、因变量:2、函数的三种表示法:

  (1)关系式法(2)列表法

  (3)图像法

  第五章生活中的轴对称

  一、轴对称

  1、轴对称图形:

  如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2、轴对称:

  对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

  3、性质:

  (1)对应点所连的线段被对称轴垂直平分

  (2)对应线段相等,对应角相等。

  二、角平分线的性质:

  角平分线上的点到这个角的两边的距离相等。

  三、线段的垂直平分线(简称中垂线):

  定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。四、等腰三角形

  1、等腰三角形:有两条边相等的三角形叫做等腰三角形。

  2、等腰三角形的性质:

  (1)等腰三角形的两个底角相等

  (2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),

  (3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

  3、等腰三角形的判定:

  (1)有两条边相等的三角形是等腰三角形。

  (2)如果一个三角形有两个角相等,那么它们所对的边也相等五、等边三角形:

  1、等边三角形:三边都相等的三角形叫做等边三角形。2、等边三角形的性质:

  (1)具有等腰三角形的所有性质。

  (2)等边三角形的各个角都相等,并且每个角都等于60°。

  3、等边三角形的判定

  (1)三边都相等的三角形是等边三角形。

  (2):三个角都相等的三角形是等边三角形

  (3):有一个角是60°的等腰三角形是等边三角形。

初一数学知识点总结6

  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的'掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初一数学知识点总结7

  实数:

  —有理数与无理数统称为实数。

  有理数:

  整数和分数统称为有理数。

  无理数:

  无理数是指无限不循环小数。

  自然数:

  表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

  数轴:

  规定了圆点、正方向和单位长度的直线叫做数轴。

  相反数:

  符号不同的两个数互为相反数。

  倒数:

  乘积是1的两个数互为倒数。

  绝对值:

  数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  数学定理公式

  有理数的运算法则

  ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  ⑵减法法则:减去一个数,等于加上这个数的.相反数。

  ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

  ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

  角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。

  数学第一章相交线

  一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

  二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

初一数学知识点总结8

  第一章:丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  ①几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  ②点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形(按名称分)

  柱:

  ①圆柱

  ②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  锥:

  ①圆锥

  ②棱锥

  球

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

  侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:

  11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

  6、截一个正方体:

  用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  7、三视图:

  物体的三视图指主视图、俯视图、左视图。

  主视图:从正面看到的图,叫做主视图。

  左视图:从左面看到的图,叫做左视图。

  俯视图:从上面看到的图,叫做俯视图。

  第二章:有理数及其运算

  1、有理数的分类

  ①正有理数

  有理数{ ②零

  ③负有理数

  有理数{ ①整数

  ②分数

  2、相反数:

  只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

  5、绝对值:

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

  若|a|=a,则a≥0;

  若|a|=-a,则a≤0。

  正数的绝对值是它本身;

  负数的绝对值是它的相反数;

  0的绝对值是0。

  互为相反数的两个数的绝对值相等。

  6、有理数比较大小:

  正数大于0,负数小于0,正数大于负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  7、有理数的运算:

  ①五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;

  绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的`偶次幂是正数,负数的奇次幂是负数。

  ②有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  ③运算律(5种)

  加法交换律

  加法结合律

  乘法交换律

  乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成a×

  10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

  第三章:整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:

  ①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数。

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

  2、整式:单项式和多项式统称为整式。

  ①单项式:

  都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:

  单独的一个数或一个字母也是单项式;

  单独一个非零数的次数是0;

  当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

  ②多项式:

  几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  ③同类项:

  所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:

  ①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:

  把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章基本平面图形

  1、线段、射线、直线

  名称

  表示方法

  端点

  长度

  直线

  直线AB(或BA)

  直线l

  无端点

  无法度量

  射线

  射线OM

  1个

  无法度量

  线段

  线段AB(或BA)

  线段l

  2个

  可度量长度

  2、直线的性质

  ①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  ②过一点的直线有无数条。

  ③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  3、线段的性质

  ①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  ②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  ③线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  ②角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:

  一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

  终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:

  由若干条不在同一条直线上的线段首尾顺次相连组成的'封闭平面图形叫做多边形。

  连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

  12、圆:

  平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

  固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

  由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

  顶点在圆心的角叫做圆心角。

  第五章一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  ①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  ②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、移项:

  把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

  6、解一元一次方程的一般步骤:

  ①去分母

  ②去括号

  ③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

  ④合并同类项

  ⑤将未知数的系数化为1

  第六章数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。

  其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学知识点总结9

  相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

  2代数式求值

  (1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

  (2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

  题型简单总结以下三种:

  ①已知条件不化简,所给代数式化简;

  ②已知条件化简,所给代数式不化简;

  ③已知条件和所给代数式都要化简.

  3由三视图判断几何体

  (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的.形状,然后综合起来考虑整体形状.

  (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

  ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

  ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

  ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

  ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法

初一数学知识点总结10

数轴知识点

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  相反数知识点

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数。

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  三角形中位线定理的作用

  位置关系:可以证明两条直线平行。

  数量关系:可以证明线段的倍分关系。

  常用结论:任一个三角形都有三条中位线,由此有:

  结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

  结论2:三条中位线将原三角形分割成四个全等的三角形。

  结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

  结论4:三角形一条中线和与它相交的中位线互相平分。

  结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

  注意:重要辅助线:⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线。

  等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  (2)等腰三角形的其他性质:

  ①等腰直角三角形的两个底角相等且等于45°。

  ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  ③等腰三角形的三边关系:设腰长为a,底边长为b,则

  ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°-2∠B,∠B=∠C。

  三角形全等的判定定理

  (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成"边角边"或"SAS")。

  (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成"角边角"或"ASA")。

  (3)边边边定理:有三边对应相等的两个三角形全等(可简写成"边边边"或"SSS")。

  直角三角形全等的判定:

  对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成"斜边、直角边"或"HL")。

  拓展阅读:数学学习方法技巧

  做好预习

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  认真听课

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  认真解题

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  及时纠错

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的'问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  学会总结

  数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  学会管理

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

初一数学知识点总结11

  概率

  一、事件:

  1、事件分为必然事件、不可能事件、不确定事件。

  2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

  3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

  4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

  二、等可能性:是指几种事件发生的可能性相等。

  1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

  2、必然事件发生的概率为1,记作P(必然事件)=1;

  3、不可能事件发生的概率为0,记作P(不可能事件)=0;

  4、不确定事件发生的概率在0—1之间,记作0

  三、几何概率

  1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

  2、求几何概率:

  (1)首先分析事件所占的面积与总面积的关系;

  (2)然后计算出各部分的面积;

  (3)最后代入公式求出几何概率。

  初一数学学习方法技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的.概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:

  冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  6、学会管理:

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

  提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

  有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

初一数学知识点总结12

  平面直角坐标系

  1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

  2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

  3.原点的坐标是(0,0);

  纵坐标相同的点的连线平行于x轴;

  横坐标相同的点的连线平行于y轴;

  x轴上的点的纵坐标为0,表示为(x,0);

  y轴上的点的横坐标为0,表示为(0,y)。

  4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  5.几个象限内点的特点:

  第一象限(+,+);第二象限(—,+);

  第三象限(—,—);第四象限(+,—)。

  6.(x,y)关于原点对称的点是(—x,—y);

  (x,y)关于x轴对称的点是(x,—y);

  (x,y)关于y轴对称的点是(—x,y)。

  7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

  点P(x,y)到y轴的距离是︱x︳。

  8.在第一、三象限角平分线上的点的坐标是(m,m);

  在第二、四象限叫平分线上的点的坐标是(m,—m)。

  不等式与不等式组

  (1)不等式

  用不等号(<,>,≥,≤,≠)连接的'式子叫做不等式。

  (2)不等式的性质

  ①对称性;

  ②传递性;

  ③加法单调性,即同向不等式可加性;

  ④乘法单调性;

  ⑤同向正值不等式可乘性;

  ⑥正值不等式可乘方;

  ⑦正值不等式可开方;

  (3)一元一次不等式

  用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

  (4)一元一次不等式组

  一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

  点、线、面、体知识点

  1.几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  2.点动成线,线动成面,面动成体。

  点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。

  一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示。

  一条射线可以用端点和射线上另一点来表示。

  一条线段可用它的端点的两个大写字母来表示。

  注意:

  (1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

  (2)直线和射线无长度,线段有长度。

  (3)直线无端点,射线有一个端点,线段有两个端点。

  (4)点和直线的位置关系有线面两种:

  ①点在直线上,或者说直线经过这个点。

  ②点在直线外,或者说直线不经过这个点。

  角的种类

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。

初一数学知识点总结13

  一、邻补角:

  两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

  二、对顶角:

  是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

  对顶角的性质:对顶角相等。

  三、垂直

  1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b 垂直是相交的一种特殊情形。

  2、垂线的性质:

  ①过一点有且只有一条直线与已知直线垂直;

  ②连接直线外一点与直线上各点的所有线段中,垂线段最短。

  直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  3、画法:

  ①一靠(已知直线)

  ②二过(定点)

  ③三画(垂线)

  四、平行线

  1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b

  2、 “三线八角”:两条直线被第三条直线所截形成的

  ① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

  ② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

  ③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

  3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  4、 平行线的判定方法

  ① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

  ② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;

  ③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

  ④ 平行于同一条直线的两条直线平行;

  ⑤同一平面内,垂直于同一条直线的两条直线平行。不能直接用,需要通过90度同位角相等证明

  5、 平行线的性质:

  ①两条平行线被第三条直线所截,同位角相等;

  ②两条平行线被第三条直线所截,内错角相等;

  ③两条平行线被第三条直线所截,同旁内角互补。

  6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

  7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

  五、平移

  1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  说明:

  ①、平移不改变图形的形状和大小,改变图形的位置;

  ②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。

  ③图形平移的方向,不一定是水平的

  2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

  第五章 相交线与平行线 第二套总结

  5.1.1相交线

  有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。

  有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

  两条直线相交,有2对对顶角。

  对顶角相等。

  5.1.2

  两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  注意:

  ⑴垂线是一条直线。

  ⑵具有垂直关系的两条直线所成的4个角都是90。

  ⑶垂直是相交的特殊情况。

  ⑷垂直的记法:a⊥b,AB⊥CD。

  画已知直线的垂线有无数条。

  过一点有且只有一条直线与已知直线垂直。

  连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

  直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  5.2.1平行线

  在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

  在同一平面内两条直线的关系只有两种:相交或平行。

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  5.2.2直线平行的条件

  判定两条直线平行的方法:

  方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

  方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

  方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

  5.3平行线的性质

  平行线具有性质:

  性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

  性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

  性质3 两条平行线被第三条直线所截,同旁内角互补。简说:两直线平行,同旁内角互补。

  同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做两条平行线的距离。

  判断一件事情的语句叫做命题。

  5.4平移

  ⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

  ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。图形的这种移动,叫做平移变换,简称平移。

  第六章 平面直角坐标系

  6.1.1有序数对

  有顺序的两个数a与b组成的数对,叫做有序数对。

  6.1.2平面直角坐标系

  平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  平面上的任意一点都可以用一个有序数对来表示。

  建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  6.2坐标方法的简单应用

  在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

  第七章 三角形

  7.1与三角形有关的线段

  三角形两边的和大于第三边。

  三角形具有稳定性。

  三角形的内角和等于180度

  7.2.2三角形的外角

  三角形的一边与另一边的延长线组成的角,叫做三角形的.外角。

  三角形的一个外角等于与它不相邻的两个内角的和。

  三角形的一个外角大于与它不相邻的任何一个内角。

  7.3多边形及其内角和

  在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  各个角都相等,各条边都相等的多边形叫做正多边形。

  7.3.2多边形的内角和

  n边形的内角和公式:180(n-2)

  多边形的外角和等于360度

  第九章 不等式与不等式组

  9.1不等式

  9.1.1不等式及其解集

  用“<”或“>”号表示大小关系的式子叫做不等式。

  使不等式成立的未知数的值叫做不等式的解。

  能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。

  含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

  不等式有以下性质:

  不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。

  不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。

  不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向。

  解一元一次不等式组时。一般先求出其中各不等式的解集,再利用数轴直观地表示不等式组的解集,最后写出不等式的解集。

  第十二章

  全等三角形复习一、全等三角形

  1.定义:能够完全重合的两个三角形叫做全等三角形。

  理解:

  ①全等三角形形状与大小完全相等,与位置无关;

  ②一个三角形经过平移、翻折、旋转可以得到它的全等形;

  ③三角形全等不因位置发生变化而改变。

  2、全等三角形有哪些性质

  (1)全等三角形的对应边相等、对应角相等。

  理解:

  ①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

  ②对应角的对边为对应边, 对应边对的角为对应角。

  (2)全等三角形的周长相等、面积相等。 反之不对

  (3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

  3、全等三角形的判定

  边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

  边边边

  边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)

  边角边

  角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)

  角边角

  角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

  角角边 斜边. 斜边 直角边:

  斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)

  斜边 直角边

  第十章统计知识

  知识点1 扇形统计图的画法

  Ⅰ.把一个圆的面积看成是1,以圆心为顶点的周角是360°则圆心角是36°的扇形占整个圆面积的10分之一,即10%.同理,圆心角是72°的扇形占整个圆面积的二十分之一,即20%。因此,画扇形统计图的关键是算出圆心角的大小. Ⅱ.扇形的面积与其对应的圆心角的关系.

  (1)扇形的面积越大,圆心角的度数越大.

  (2)扇形的面积越小,圆心角的度数越小.

  Ⅲ.扇形所对圆心角的度数与百分比的关系是:

  圆心角的度数=百分比×360°

  知识点2 频数分布直方图的画法

  (1)找到这一组数据的最大值和最小值;

  (2)求出最大值与最小值的差;

  (3)确定组距,分组;

  (4)冲出频数分布表;

  (5)由频数分布表画出频数分布直方图.

  概念:

  抽样调查;它只取一部分对象进行调查,然后根据调查数据推断全体对象的情况

  总体:要考察的全体对象

  个体:组成总体的每一个考察对象

  样本:被抽取的那些个体组成一个样本

  样本容量:样本中个体的数目称为样本容量

  分层抽样:先将总体分成几个年龄层,然后在各年龄层中进行简单随机抽样

初一数学知识点总结14

  有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的`绝对值;

  3、一个数与0相加,仍得这个数。

  有理数加法的运算律

  1、加法的交换律:a+b=b+a;

  2、加法的结合律:(a+b)+c=a+(b+c)

  有理数减法法则

  减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

  有理数乘法法则

  1、两数相乘,同号为正,异号为负,并把绝对值相乘;

  2、任何数同零相乘都得零;

  3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

初一数学知识点总结15

  1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

  5、几何体简称为体(solid).

  6、包围着体的是面(surface),面有平的面和曲的面两种.

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

  8、点动成面,面动成线,线动成体.

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

  13、连接两点间的线段的长度,叫做这两点的距离(distance).

  14、角∠(angle)也是一种基本的'几何图形.

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

  16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等.

【初一数学知识点总结】相关文章:

数学初一知识点总结07-04

初一数学知识点的总结11-07

初一数学苏教版知识点总结09-30

初一数学下知识点总结12-07

初一数学知识点总结07-11

初一数学知识点总结(精选)10-26

初一数学棱锥知识点总结11-29

初一数学下册知识点总结11-29

(经典)初一数学知识点总结09-09

(精选)初一数学知识点总结10-25