- 高一数学公式 推荐度:
- 相关推荐
高一数学公式
在我们上学期间,不管我们学什么,都需要掌握一些知识点,知识点就是掌握某个问题/知识的学习要点。哪些知识点能够真正帮助到我们呢?以下是小编收集整理的高一数学公式,希望对大家有所帮助。

高一数学公式 1
圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x—a)2+(y—b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2—4f>0】
椭圆公式
1、椭圆周长公式:l=2πb+4(a—b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a—b)=sinacosb—sinbcosa
2、cos(a+b)=cosacosb—sinasinbcos(a—b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1—tanatanb)tan(a—b)=(tana—tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb—1)/(ctgb+ctga)ctg(a—b)=(ctgactgb+1)/(ctgb—ctga)
倍角公式
1、tan2a=2tana/(1—tan2a)ctg2a=(ctg2a—1)/2ctga
2、cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a
半角公式
1、sin(a/2)=√((1—cosa)/2)sin(a/2)=—√((1—cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=—√((1+cosa)/2)
3、tan(a/2)=√((1—cosa)/((1+cosa))tan(a/2)=—√((1—cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1—cosa))ctg(a/2)=—√((1+cosa)/((1—cosa))
和差化积
1、2sinacosb=sin(a+b)+sin(a—b)2cosasinb=sin(a+b)—sin(a—b)
2、2cosacosb=cos(a+b)—sin(a—b)—2sinasinb=cos(a+b)—cos(a—b)
3、sina+sinb=2sin((a+b)/2)cos((a—b)/2cosa+cosb=2cos((a+b)/2)sin((a—b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana—tanb=sin(a—b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb—ctga+ctgbsin(a+b)/sinasinb
高一数学公式记忆口诀
《集合与函数》
内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
高一数学公式 2
导数公式
y=f(x)=c (c为常数)则f(x)=0
f(x)=x^n (n不等于0) f(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinx f(x)=cosx
f(x)=cosx f(x)=-sinx
f(x)=a^x f(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f(x)=e^x
f(x)=logaX f(x)=1/xlna(a>0且a不等于1,x>0)
f(x)=lnx f(x)=1/x(x>0)
f(x)=tanx f(x)=1/cos^2x
f(x)=cotx f(x)=-1/sin^2x
导数运算法则
加法法则:(f(x)-g(x))=f(x)-g(x)
减法法则:(f(x)+g(x))=f(x)+g(x)
乘法法则:(f(x)g(x))=f(x)g(x)+f(x)g(x)
除法法则:(g(x)/f(x))=(g(x)f(x)-f(x)g(x))/(f(x))^2
高一数学公式 3
集合与函数
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
三角函数
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
高一数学公式 4
等比数列公式
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1)Sn=n*a1 (q=1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
等差数列公式
等差数列的通项公式为:an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n均为正整数
高一数学公式 5
一般数列的通项求法
一般有:
an=Sn-Sn-1 (n≥2)
累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
特别的:
在等差数列中,总有Sn S2n-Sn S3n-S2n
2(S2n-Sn)=(S3n-S2n)+Sn
即三者是等差数列,同样在等比数列中。三者成等比数列
不动点法(常用于分式的通项递推关系)
特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
数列前N项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即Sn=a1+a2+...+an;
那么Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法3 倒序相加法
(二)1.等比数列:
通项公式an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1),am=a1*q^(m-1)
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则am×an=ap×aq
2.等比数列前n项和
设a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下5个方法: 1,完全归纳法(即数学归纳法)2 累乘法3 错位相减法 4 倒序求和法5 裂项相消法
高一数学公式 6
抛物线公式
y = ax^2+bx+c就是y等于ax的平方加上b
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=—p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=—2px x^2=2py x^2=—2py
面积公式
圆的体积公式4/3(pi)(r^3)
圆的面积公式(pi)(r^2)
圆的周长公式2(pi)r
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角
圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0
抛物线标准方程y2=2px y2=—2px x2=2py x2=—2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c_h
正棱锥侧面积S=1/2c_h正棱台侧面积S=1/2(c+c)h
圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi_r2
圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_r a是圆心角的弧度数r>0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h
斜棱柱体积V=SL注:其中S是直截面面积L是侧棱长
柱体体积公式V=s_h圆柱体V=pi_r2h
椭圆周长计算公式
椭圆周长公式:L=2πb+4(a—b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
高一数学公式 7
一、集合间的基本关系
1、“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B=—11“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3、不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
二、集合的运算
1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)。
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高一数学公式 8
一、圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
二、直线和圆的位置关系:
1、直线和圆位置关系的判定
方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交。
②Δ=0,直线和圆相切。
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。
2、直线和圆相切,这类问题主要是求圆的切线方程。求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
三、切线
1、性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
2、当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
3、切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
4、切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线分两条切线的夹角。
四、圆锥曲线的定义
1、椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
2、双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即。
3、圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。
高一数学公式 9
圆锥曲线性质:
一、圆锥曲线的定义
1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.
2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.
3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.
二、圆锥曲线的方程
1.椭圆:+ =1(a>b>0)或+ =1(a>b>0)(其中,a2=b2+c2)
2.双曲线:- =1(a>0,b>0)或- =1(a>0,b>0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p>0),x2=±2py(p>0)
三、圆锥曲线的性质
1.椭圆:+ =1(a>b>0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)
2.双曲线:- =1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x
3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1
高一数学公式 10
1.定义等差数列
如果一个数列从第二项开始,每个数列与前一项的差异等于相同的常数,则该数列称为等差数列,通常用字母d表示。
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,通项公式为an=a1 (n-1)d。
3.等差中项
如果A=(a b)/2,所以A叫a和b等差中项。
4.等差数列的常用性质
(1)推广通项公式:an=am (n-m)d(n,m∈N_)。
(2)若{an}和m n=p q,则am an=ap aq(m,n,p,q∈N_)。
(3)若{an}等差数列,公差为d,则ak,ak m,ak 2m,…(k,m∈N_)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。
(5)S2n-1=(2n-1)an。
(6)若n为偶数,则S偶-S奇=nd/2;
若n为奇数,则S奇-S偶=a中(中间项)。
注意:
一个推导
前n项和公式采用倒序相加法推导等差数列:
Sn=a1 a2 a3 … an,①
Sn=an an-1 … a1,②
① ②得:Sn=n(a1 an)/2
两个技巧
要善于设置三个或四个数组成等差数列的问题。
(1)如果奇数数数成等差数列并和定值,则可以设置为…,a-2d,a-d,a,a d,a 2d,….
(2)如果偶数数成等差数并且和定值,则可以设置为…,a-3d,a-d,a d,a 3d,…,根据等差数列的定义,对称设元。
四种方法
判断等差数列的方法
(1)定义法:对n≥验证2的任意自然数an-an-一是同一常数;
(2)等差中项法:验证2an-1=an an-2(n≥3,n∈N_)都成立;
(3)通项公式法:验证an=pn q;
(4)前n项和公式法验证:Sn=An2 Bn。
注:后两种方法只能用来判断是否等差数列,而不能用来证明等差数列。
【高一数学公式】相关文章:
高一数学公式大全03-12
高三数学公式03-09
高一反思03-01
高一新生07-18
高一复习方法06-08
高一化学知识03-04
知足高一1500字09-05
高一新生军训10-24
高一物理月考04-02