小学数学知识点总结

时间:2024-08-26 09:55:05 数学 我要投稿

小学数学知识点总结精品(15篇)

  总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起认真地写一份总结吧。总结一般是怎么写的呢?下面是小编精心整理的小学数学知识点总结,仅供参考,大家一起来看看吧。

小学数学知识点总结精品(15篇)

小学数学知识点总结1

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,

  10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的`质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。

  的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式被减数=减数+差

  和=加数+另一个加数

  减数=被减数—差

  加数=和—另一个加数

  差=被减数—减数

  符号/是什么意思数学

  /在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

  实数知识点

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

小学数学知识点总结2

  第一单元 小数乘法

  1.小数乘整数:意义——求几个相同加数的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  2.小数乘小数:意义——就是求这个数的几分之几是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

  3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法

  4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  5.小数四则运算顺序跟整数是一样的。

  6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)

  7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

  10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

  11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

  12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

  13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

  14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

  15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

  16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a

  17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

  18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

  19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

  20.所有的方程都是等式,但等式不一定都是等式。

  21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

  22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。

  23.三角形面积公式推导:旋转 两个完全一样的`三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

  26.长方形框架拉成平行四边形,周长不变,面积变小。

  27.组合图形:转化成已学的简单图形,通过加、减进行计算。

  28.平均数=总数量÷总份数

  29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

  30.数不仅可以用来表示数量和顺序,还可以用来编码。

  31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

  32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

小学数学知识点总结3

  第一单元混合运算

  知识点一、

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  知识点二、

  关于“0”的运算

  1、“0”不能做除数;

  字母表示:a÷0错误

  2、一个数加上0还得原数;

  字母表示:a+0=a

  3、一个数减去0还得原数;

  字母表示:a-0=a

  4、被减数等于减数,差是0;

  字母表示:a-a=0

  5、一个数和0相乘,仍得0;

  字母表示:a×0=0

  6、0除以任何非0的数,还得0;

  字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二单元观察物体

  1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。

  2、总结:同一立体图形从不同角度观察会有不同的形状。

  第三单元加与减

  第一节捐书活动

  知识点:

  1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。

  2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第二节运白菜

  1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。

  2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第三节节余多少钱

  三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。

  第四节里程表(一)

  1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。

  2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。

  第五节里程表(二)

  1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数

  2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。

  第四单元乘与除

  第一节小树有多少棵

  知识点:

  1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。

  2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。

  3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。

  4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。

  第二节需要多少钱

  知识点:

  1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。

  2、计算混合运算时,要先明确运算顺序,再计算。

  第三节丰收了

  知识点:1、整十数除以一位数的口算方法:

  (1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。

  (2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。

  2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。

  第四节植树

  知识点:1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。

  2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。

  第五单元周长

  知识点1:什么是周长

  1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。

  2、不规则物体或图形的测量方法:绳子测量法。

  3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。

  知识点二:长方形的周长

  1、求长方形的周长必须满足两个条件:已知长和宽的长度。

  2、长方形周长的计算方法:

  (1)长方形的周长=长+宽+长+宽

  (2)长方形的周长=长×2+宽×2

  (3)长方形的周长=(长+宽)×2

  (4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”

  (5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”

  3、正方形周长的计算方法:

  (1)可以把4条边长加起来;

  (2)用一条边长乘以4,即正方形的周长=边长×4

  4、靠墙围成的长方形有两种情况:

  (1)长边靠墙,

  (2)宽边靠墙。

  5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。

  第六单元乘法

  第一节蚂蚁做操

  知识点:

  1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。

  2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。

  第二节去游乐园

  知识点:

  1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。

  2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。

  第三节乘火车

  知识点:

  1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。

  2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。

  第四节去奶奶家

  知识点:

  借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。

  第五节:0×5=?

  知识点:

  1、0和任何数相乘都等于0。

  2、一个乘数末尾有0的乘法的计算方法:

  (1)先用这个乘数0前面的数乘另一个乘数;

  (2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.

  3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。

  4、结论:

  (1)因数的末尾有0,乘积中一定有0。

  (2)因数的中间有0,乘积中不一定有0。

  第六节买矿泉水

  知识点:

  1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。

  2、连乘的运算顺序:按从左到右的顺序依次计算。

  3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。

  第七单元年月日

  第一节看日历(一)

  知识点:

  1、一年有12个月。

  2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。

  3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个

  第二节看日历(二)

  知识点:

  1、2月29日是个特殊的日子,只有4年才出现。

  2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。

  3、认识平年和闰年:

  (1)公里年份是4的倍数的是闰年,不是4的.倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。

  (2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.

  (3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。

  (4)平年一年有52个星期零1天,闰年一年有52个星期零2天。

  365÷7=52(个)......1(天)

  366÷7=52(个)......2(天)

  4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。

  第三节一天的时间

  知识点:

  1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。

  2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,

  3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。

  4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。

  5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。

  第四节:时间表

  知识点:1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。

  2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。

  3、判断谁跑得快,只要看谁用的时间短就可以了。

  第五节数学好玩

  知识点:

  1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。

  2、地面上一定范围内的直线距离可以直接用直尺来测量。

  3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。

  4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。

  5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。

  第八单元认识小数

  第一节文具店

  知识点:1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。

  2、小数由整数部分、小数点、和小数部分组成。

  3、一个小数的小数部分有几位数,它就是几位小数。

  4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。

  5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。

  6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。

  7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。

  第二节货比三家

  知识点

  1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。

  2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。

  第三节存零用钱

  知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  第四节寄书

  1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。

  第五节能通过吗

  1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。

  2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。

  3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。

小学数学知识点总结4

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

  小学生奥数知识点

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

  小学奥数几何知识点整理

  鸟头定理即共角定理。

  燕尾定理即共边定理的'一种。

  共角定理:

  若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

  共边定理:

  有一条公共边的三角形叫做共边三角形。

  共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

  这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

  为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

  例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

  很显然,三角形ABD和ACD面积之比是1:2

  因为共边,所以两个对应高之比是1:2

  而四个小三角形也会存在类似关系

  三角形ABE和三角形ACE的面积比是1:2

  三角形BED和三角形CED的面积比也是1:2

  所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

  以上是根据共边后,高之比等于三角形面积之比证明所得。

  必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

小学数学知识点总结5

  一、学习目标:

  1.进一步掌握含有同一级运算的运算顺序;

  2.通过具体的活动,认识方向与距离对确定位置的作用;发展空间观念;

  3.能运用运算定律进行一些简便运算;培养根据具体情况,选择算法的意识与能力,发展思维的灵活性;

  4.了解小数的产生;理解小数的意义;

  5.掌握小数的计算单位及单位间的进率;

  6.理解三角形的意义,掌握三角形的特征和特性;理解三角形三边不等的关系;

  7.理解掌握小数加、减法的方法;培养计算能力;

  8.探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  二、学习难点:

  1.能根据任意方向和距离确定物体的位置;对任意角度具体方向的准确描述;

  2.理解和抽象小数的意义;抽象小数的意义;

  3.掌握三角形的特性;懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;

  4.计算方法;退位减法;

  5.探究和理解乘法交换律、结合律。

  三、知识点概括总结:

  1.整数加法:

  (1)把两个数合并成一个数的运算叫做加法。(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。(3)加数+加数=和,一个加数=和-另一个加数。2.整数减法:

  (1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  (2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。(3)加法和减法互为逆运算。3.整数乘法:

  (1)求几个相同加数的和的简便运算叫做乘法。

  (2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。(3)在乘法里,0和任何数相乘都得0。(4)1和任何数相乘都的任何数。

  (5)一个因数×一个因数=积;一个因数=积÷另一个因数。4.整数除法:

  (1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  (2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。(3)乘法和除法互为逆运算。

  (4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  (5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

  5.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

  6.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

  7.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。8.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。9.运算顺序:

  (1)小数、分数、整数:小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。

  (2)没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。

  (3)有括号的'混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。(4)第一级运算:加法和减法叫做第一级运算。(5)第二级运算:乘法和除法叫做第二级运算。10.加法交换律:

  加法交换律的概念为:两个加数交换位置,和不变。字母公式:a+b+c=(b+a)+c11.加法结合律:

  加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。字母公式:a+b+c=a+(b+c)12.乘法交换律:

  乘法交换律的概念为:两个因数交换位置,积不变。字母公式:a×b=b×a13.乘法结合律:

  乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。字母公式:a×b×c=a×(b×c)14.乘法分配律:

  乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。字母公式:(a+b)×c=a×c+b×c15.小数:小数由整数部分、小数部分和小数点组成。

  当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。

  16.小数基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。

  17.小数的写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。18.小数的读法:

  一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读,例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。

  另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。

  19.小数的比较:小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。

  因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;20.小数的性质:

  (1)在小数的末尾添上零或去掉零,小数的大小数不变。

  (2)小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……

  如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…

  21.小数的近似值:保留小数:按要求在舍去部分最高位进行四舍五入运算。

  22.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。23.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。24.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。25.生活中的三角形物品:雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。26.三角形中的线段:

  (1)中线:顶点与对边中点的连线,平分三角形的面积。

  (2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。

  (3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴)(4)中位线:任意两边中点的连线。

  27.三角形为什么具有稳定性:任取三角形两条边,则两条边的非公共端点被第三条边连接∵第三条边不可伸缩或弯折∴两端点距离固定∴这两条边的夹角固定∵这两条边是任取的

  ∴三角形三个角都固定,进而将三角形固定∴三角形有稳定性

小学数学知识点总结6

  1、上、下

  (1)在具体场景中理解上、下的含义及其相对性。

  (2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

  (3)培养学生初步的空间观念。

  2、前、后

  (1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

  (2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

  (3)培养学生初步的空间观念。

  加减法

  (一)本单元知识网络:

  (二)各课知识点:

  有几枝铅笔(加法的认识)

  知识点:

  1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

  2、初步尝试选择恰当的方法进行5以内的加法口算。

  3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的'意思。

  有几辆车(初步认识加法的交换律)

  3、左、右(1)在具体场景中理解左、右的含义及其相对性。

  (2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

  (3)培养学生初步的空间观念。

  4、位置

  (1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

  (2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

  (3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

小学数学知识点总结7

  一、知识框架

  一级知识点数与代数二级知识点数的运算三级知识点

  1、列竖式计算除法。

  2、两位数除以一位数;

  除法的验算

  3、一步计算的问题

  4、两步计算的问题

  1、质量单位千克、克数与代数常见的量

  2、千克、克之间的换算,简单的实际问题

  3、24时计时法空间与图形空间与图形统计与概率图形的认识

  从三个方向观察用小正方体搭成的立体图形形状

  1.周长的认识

  2.长方形、正方形的周长计算描述事件发生的可能性。

  二、期末知识点

  第一单元除法(除法是乘法的逆运算)

  两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。

  1.计算:列竖式计算除法。

  2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。

  3.笔算:两位数除以一位数;除法的.验算(用乘法验算)。

  4.估算:估计两位数除以一位数的商是几十多。

  5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价

  6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。

  练习:

  (1)用竖式计算,并验算:62÷266÷672÷347÷7

  (2)口算:36÷360÷268÷290÷3

  (3)列竖式计算:39÷389÷467÷274÷3

  (4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3

  (5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?

  (6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。

  整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。

  练习:

  (1)口算:201+4000800030006000201000+100

  (2)写一写:两个千加两个百加一个十是多少?

  (3)三千零二是由几个千和几个一组成?

  (4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。

  2.大小比较

  比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。

  练习:

  比较大小:3650和2520,7890和8790第三单元千克和克

  千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。

  1.称一个物体有多重,一般用千克为单位。

  2.净含量是指包装袋内物品实际有多重。

  3.千克可以用KG表示,又叫公斤。

  4.从秤上读出物品的重量。

  5.称比较轻的物品,一般用克为单位。

  6.认识天平。

  7.千克和克之间的关系。1千克=1000克。

  练习

  (1)一袋盐重500克,两袋盐重()克?

  (2)2千克=()克

  (3)9000克=()千克第四单元加和减

  1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。

  练习

  口算:44+2532+5714+6876642.画线段图解决问题。

  练习

  手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。

  1.24时记时法及它与普通记时法(12时记时法)的联系

  2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。

  求经过时间:

  记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。

  普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时

  早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时

  深夜12时24时(也是第二天的0时)

  记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。

  练习

  (1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?

  (2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形

  1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)

  2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。

  练习

  (1)篮球场长26米,宽14米,求篮球场的周长。

  (2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?

  第七单元乘法

  1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)

  2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:

  (1)200×3152×4261×3224×5(2)124×3×2115×2×4

  (3)一头牛一天吃20千克草,两头牛两天吃多少千克草?

  第八单元观察物体

  安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。

  1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。

  2.在不同的位置观察,看到的物体的面的个数往往是不相同的。

  3.进行简单几何体与其三视图之间的转化。

  第九单元统计与可能性

  学习简单的统计知识。

  练习

  (1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?

  第十单元认识分数

  理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。

  1.分数的表示:分子、分母、分数线。

  2.同分母分数比较大小。

  3.同分母分数的加减。

小学数学知识点总结8

  竖式除法

  1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

  2、进一步体会除法的意义。

  有余数的除法

  1、体会有余数除法的意义。

  2、积累正确的试商方法。

  4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

  5、能运用有余数除法的知识解决一些简单的实际问题。

  分苹果(竖式除法)

  知识点:

  1、掌握表内除法竖式的书写格式。

  2、掌握除法竖式的写法和每一步所表示的含义。

  分橘子(有余数的除法(一))

  知识点:

  1、体会有余数除法的意义。

  2、会用竖式表示有余数的除法,了解余数一定要比除数小。

  分草莓(有余数的除法(二))

  知识点:

  1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

  2、能运用有余数除法的知识解决一些简单的实际问题。

  租船(有余数除法的应用(一))

  知识点:

  灵活运用有余数的除法的有关知识解决生活中的简单实际问题。

  派车(有余数除法的应用(二))

  知识点:

  灵活运用有余数除法及相关知识解决生活中的简单实际问题。

  认识分米、毫米、千米

  1、分米用字母dm表示,1分米写成1dm

  2、毫米用字母mm表示,1毫米写成1mm

  3、千米用字母km表示,1千米写成1km

  米、分米、厘米、毫米、千米之间的换算

  1、1厘米=10毫米或1cm=10mm

  2、1分米=10厘米或1dm=10cm

  3、1米=100厘米或1m=100cm

  4、1米=10分米或1m=10dm

  5、1千米=1000米或1km=1000m

  感受1分米、1毫米、1千米间的实际长度

  1、一张IC卡的厚度大约是1毫米

  2、1扎的长度大约是1分米

  3、公共汽车两站地间的距离大约是1千米

  4、根据具体情境选择合适的长度单位

  铅笔有多长(分米、毫米的认识)

  知识点:

  通过实际测量,了解米、分米、厘米、毫米之间的关系。

  1分米=10厘米或1dm=10cm;

  1米=10分米或1m=10dm;

  1厘米=10毫米或1cm=10mm;

  2、知道1分米或1毫米的实际长度。

  3、能利用长度单位之间关系进行单位换算

  1千米有多长(千米的认识)

  知识点:

  1、体验1千米有多长。

  2、了解千米和米之间的关系;1千米=1000米或1km=1000m。

  3、能正确使用长度单位。

  认识角(角的初步认识)

  知识点:

  1、角是由一个顶点和两条直直的边组成的;

  2、角的各部分名称、记法和读法;

  3、能用角的符号(“∠”)表示角;

  4、会比较角的大小。了解角的大小与两边张口的大小有关,与边的长短无关;

  5、能辨认直角、锐角和钝角。

  长方形与正方形

  知识点:

  1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

  2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。

  3、能在方格纸上画出长方形与正方形。

  平行四边形

  知识点:

  1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

  2、初步了解长方形是特殊的平行四边形。

  欣赏与设计

  知识点:

  1、进一步掌握已学过的图形,感受图形之美。

  2、能用学过的图形在方格纸上设计图案,涂色时有一定规律性。

  认识新的数计数单位

  1、认识计数单位“千”“万”

  2、万以内计数单位间的关系

  3、万以内数位顺序表

  万以内数的。读写

  1、会读万以内的数

  2、会写万以内的数

  3、感受“满十进一”的十进制计数法

  万以内数比较大小

  1、会比较万以内数的大小

  2、会用符号表示万以内数的大小

  3、结合实际进行万以内数的估计。

  数一数(认识新的计数单位)

  知识点:

  1、认识计数单位“千”“万”。

  2、了解万以内计数单位间的关系:10个一是十;10个十是一百;10个一百是一千;10个一千是一万。

  3、掌握万以内数的数位顺序。从右起第一位开始依次为个位,十位,百位,千位,万位。

  4、结合具体情景,对“一千”和“一万”有具体的感受。

  5、初步感受“满十进一”的十进制计数法。

  拨一拨(万以内数的读写)

  知识点:

  1、会数数:一个一个地数;十个十个地数;一百一百地数等。

  2、会读万以内的'数:从高位起,依次读出每个数位上的数,末尾有零都不读,中间有一个或两个零只读一个零。

  3、会写万以内的数:从高位起,依次写出每个数位上的数,哪位上一个单位也没有,就在那位上写零。

  4、初步感受“满十进一”的十进制计数法。

  比一比(万以内数比较大小)

  知识点:

  1、会比较万以内数的大小。方法:先比较数位的多少,数位多的数比较大,如果数位相同,先比最高位,最高位上的数相同,就比较下一位……

  2、能够用符号表示万以内数的大小。

  3、能结合实际进行万以内数的估计。

  统计表

  1、读懂信息

  2、分析信息、预测信息

  条形统计图

  1、读懂

  纵向:用直条的高矮表示(横向表示类别竖向表示数量)

  横向:用直条的长短表示(竖向表示类别横向表示数量)

  2、亲自经历收集数据

  3、绘制条形统计图并做出分析

  读统计图表(条形统计图)

  知识点:

  1、能读懂统计图表,从统计图表中获得信息。

  2、认识条形统计图,体会条形统计图能直观地表示数量的多少。

  3、能根据统计图表进行简单的分析。

  讨论(统计图表)

  知识点:

  1、对统计图表中的数据作初步的分析和预测。

  2、通过“泡豆芽”小实验记录的数据,能在方格纸上绘制统计图并作出分析。

  辨认方向

  1、给定一个方向,辨认其余的七个方向

  2、用八个方向的词语描述物体所在的位置

  认识路线

  1、会使用八个方向认识简单的路线图。

  2、路线图说出从出发地到目的地行走方向、距离和经过的地方。

  辨认方向

  知识点:

  1、结合具体情境给定一个方向(东、南、西或北),能辨认其余的七个方向,并能用这些词语描述物体所在的位置。

  2、能根据给定的一个方向,辨认地图中的其他七个方向。

  认识路线

  知识点:

  1、学会使用八个方向认识简单的路线图。

  2、能根据路线图说出从出发地到目的地行走的方向、距离和经过的地方。

小学数学知识点总结9

  一、图形的变换

  图形变换的基本方式是平移、对称和旋转。

  1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

  (2)圆有无数条对称轴。

  (3)对称点到对称轴的距离相等。

  (4)轴对称图形的特征和性质:

  ①对应点到对称轴的距离相等;

  ②对应点的连线与对称轴垂直;

  ③对称轴两边的图形大小、形状完全相同。

  2、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转要明确绕点,角度和方向。

  (3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  旋转的性质:

  (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

  (2)其中对应点到旋转中心的距离相等;

  (3)旋转前后图形的大小和形状没有改变;

  (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

  (5)旋转中心是唯一不动的点。

  4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

  二、因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。

  2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  例:12是6的倍数,6是12的因数。

  (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

  (2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找。

  (3)一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘以自然数。

  (4)2、3、5的倍数特征

  1)个位上是0,2,4,6,8的数都是2的倍数。

  2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3)个位上是0或5的数,是5的倍数。

  4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

  同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

  5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

  3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

  如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

  4、自然数按能不能被2整除来分:奇数、偶数。

  奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

  偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.

  关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

  5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。

  合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。0:

  最小的质数是2,最小的合数是4,连续的两个质数是2、3。每个合数都可以由几个质数相乘得到,质数相乘一定得合数。20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  100以内找质数、合数的技巧:

  看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

  关系:奇数×奇数=奇数质数×质数=合数

  6、最大、最小

  A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;

  7、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法分解质因数(一个合数写成几个质数相乘的形式)。...

  比如:30分解质因数是:(30=2×3×5)

  8、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7两个合数的`互质数:8和9一质一合的互质数:7和8

  两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;

  ⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  9、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。

  10、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。

  11、求最大公因数和最小公倍数方法

  用12和16来举例1、

  求法一:(列举求同法)

  最大公因数的求法:

  12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4

  最小公倍数的求法:

  12的倍数有:12、24、36、48、16的倍数有:16、32、48、最小公倍数是482、求法二:(分解质因数法)

  12=2×2×316=2×2×2×2

  最大公因数是:2×2=4(相同乘)

  最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)

  三长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个

  面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。相同点长方体面不同点棱相对的棱的长度都相等都有6个面,6个面都是长方形。12条棱,(有可能有两个相对的面是正方形)。正方体

  8个顶点。6个面都是正方形。12条棱都相等。3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b

  正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-abS=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2

  生活实际:

  油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h=V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a=a3读作“a的立方”表示3个a相乘,(即aaa)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31ml=1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高× 进率

  8、【体积单位换算】大单位小单位

  ÷进率小单位大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率× 进率

  【单位换算】大单位小单位÷进率小单位大单位

  长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)

  面积单位:1平方千米=100公顷1平方米=100平方分米

  1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)质量单位:1吨=1000千克1千克=1000克

  人民币:1元=10角1角=10分1元=100分

  四分数的意义和性质

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,

  这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如

  数单位是。

  5145的分

  4、分数与除法A÷B=

  5、真分数和假分数、带分数

  AB(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

  1、真分数:分子比分母小的分数叫真分数。真分数

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000

  如:

  310=0.3=

  53610=0.6

  14=

  25100=0.25

  方法二:用分子÷分母

  如:

  34=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  如:2

  310=2+0.3=2.3

  12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  1218=0.5

  3814=0.25=0.75=0.2=0.4=0.6

  455558312345=0.8

  =0.125=0.375=0.625

  78=0.875

  120=0.05

  125=0.04。

  14、两个数互质的特殊判断方法:

  ①1和任何大于1的自然数互质。

  ②2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求最大公因数的方法:

  ①倍数关系:最大公因数就是较小数。

  ②互质关系:最大公因数就是1

  ③一般关系:从大到小看较小数的因数是否是较大数的因数。

  16、分数知识图解:

  分数的产生

  分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。

  分数与除法:分子(被除数),分母(除数),分数值(商)。真分数真分数小于1

  真分数与假分数假分数假分数大于1或等于1

  带分数(整数部分和真分数)

  假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)

  分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

  分数的基本性质分数的大小不变。

  通分、通分子:化成分母不同,大小不变的分数(通分)

  最大公因数

  约分求最大公因数

  最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数

  通分求最小公倍数

  分数比大小(通分、通分子、化成小数)通分及其方法

  小数化分数小数化成分母是10、100、1000的分数再化简

  分数和小数的互化

  分数化小数分子除以分母,除不尽的取近似值

  五分数的加法和减法

  (1)同分母分数加、减法(分母不变,分子相加减)

  1、分数数的加法和减法

  (2)异分母分数加、减法(通分后再加减)

  (3)分数加减混合运算:同整数。

  (4)结果要是最简分数

  2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果

  合并起来。

  附:具体解释

  (一)同分母分数加、减法

  1、同分母分数加、减法:

  同分母分数相加、减,分母不变,只把分子相加减。

  2、计算的结果,能约分的要约成最简分数。

  (二)异分母分数加、减法

  1、分母不同,也就是分数单位不同,不能直接相加、减。

  2、异分母分数的加减法:

  异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

  (三)分数加减混合运算

  1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

  在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  2、整数加法的交换律、结合律对分数加法同样适用。

  3、六统计与数学广角

  众数一组数据中出现次数最多的数叫众数。众数能够反映一组数据的集中情况。

  统计在一组数据中,众数可能不止一个,也可能没有众数。复式折线统计图

  综合应用打电话的最优方案

  121-12

  1612-13

  11213-14

  1201 -15

  1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

  众数能够反映一组数据的集中情况。

  在一组数据中,众数可能不止一个,也可能没有众数。

  2、中位数:

  (1)按大小排列;

  (2)如果数据的个数是单数,那么最中间的那个数就是中位数;

  (3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

  3、平均数的求法:总数÷总份数=平均数

  4、一组数据的一般水平:

  (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

  (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

  (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

  4、平均数、中位数和众数的联系与区别:

  ①平均数:

  一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。容易受极端数据的影响,表示一组数据的平均情况。②中位数:

  将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。它不受极端数据的影响,表示一组数据的一般情况。③众数:

  在一组数据中出现次数最多的数叫做这组数据的众数。它不受极端数据的影响,表示一组数据的集中情况。

  5、统计图:我们学过条形统计图、复式折线统计图。

  条形统计图优点:条形统计图能形象地反映出数量的多少。

  折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

  注:

  ①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。

  ②要用不同的线段分别连接两组数据中的数。

  6、打电话:规律人人不闲着,每人都在传。(技巧:已知人数依次×2)

  (1)逐个法:所需时间最多。

  (2)分组法:相对节约时间。

  (3)同时进行法:最节约时间。

  七数学广角

  用天平找次品规律:

  1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

  2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次

  244~729个物体,保证能找出次品需要测的次数是6次

  3、找次品规律

  12345次数

  33×33×3×33×3×3×33×3×3×3×3

  392781243次品个数

小学数学知识点总结10

  第一单元 数据整理与收集

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  第二单元 表内除法(一)

  1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  例:24本练习本,平均分给6人,每人分多少本?

  列式:24÷6=4

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  例:24本练习本,每人4本,能分给多少人?

  列式:24÷4=6

  3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

  除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  例如:12÷4=3读作(12除以4等于3)

  例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。

  4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

  5.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  例:用“三八二十四”这句口诀

  A、24÷3=8 B、3×8=24

  C、24÷3=8 D、24÷8=3

  计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

  6.解决问题

  1、解决有关平均分问题的方法:

  总数÷每份数=份数、总数÷份数=每份数、

  因数×因数=积、一个因数=积÷另一个因数

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  (3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

  (4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

  (5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

  第三单元 图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

  成轴对称图形的汉字:

  一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

  (记住:平移只能上下移动或左右移动)

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)

  (一)填空

  1、汽车在笔直的公路上行驶,车身的运动是( )现象

  2、教室门的.打开和关闭,门的运动是( )现象。

  A.平移 B旋转 C平移和旋转

  3、下面( )的运动是平移。

  A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

  第四单元 表内除法(二)

  这单元主要是考口算题。有以下几种形式:

  1、用7、8、9的乘法口诀求商

  求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

  例.直接口算:28÷4 8÷8

  2、解决问题

  求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

  例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

  第五单元 混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分布计算,也可以列综合算式。

  请画出先算哪一步,再算哪一步(并标上1和2)

  1、同级运算的类型:

  例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

  2、不同级运算的类型:

  例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

  3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。

  例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

  4.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

  例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________

  5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

  例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

  先算____________________再算____________________

  例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

  6.练习十三 第4题 (重点)

  1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?

  2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?

  3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

  4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

  第六单元 有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  例:43÷7=()…( )余数可能是( )或者余数最大是( )

  (2)至少问题(进一法):商+1

  例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

  (3)最多问题(去尾法)

  例:小丽有10元钱,买3元一个的面包,最多能买几个?

  课例:

  1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  第七单元 万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如453 < 1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219

  补充:

  1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

  2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

  3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克)

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

小学数学知识点总结11

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

  2.结合自己的生活经验和已经掌握的.100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

小学数学知识点总结12

  第一单元圆

  1、圆的定义:平面上的一种曲线图形。

  2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等、

  3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、圆心确定圆的位置,半径确定圆的大小。

  5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

  6、在同一个圆内,所有的半径都相等,所有的直径都相等。

  7、在同一个圆内,有无数条半径,有无数条直径。

  8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

  用字母表示为:

  d=2r

  r =1/2d

  用文字表示为:

  半径=直径÷2

  直径=半径×2

  9、圆的周长:围成圆的曲线的长度叫做圆的周长。

  10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取π≈。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  11、圆的周长公式:C=πd或C=2πr

  圆周长=π×直径

  圆周长=π×半径×2

  12、圆的面积:圆所占面积的大小叫圆的面积。

  13、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

  圆的面积公式:S=πr2。

  14、圆的面积公式:S=πr2或者S=π(d/2)2或者S=π(C÷(2π))2≈

  15、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

  16、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

  17、一个环形,外圆的半径是R,内圆的半径是r,它的面积是

  S=πR2—πr2

  或S=π(R2—r2)。

  (其中R=r+环的宽度、)

  19、半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

  半圆的周长公式:

  C=πd/2+d

  或C=πr+2r

  圆周长的一半=πr

  20、半圆面积=圆的面积÷2

  公式为:S=πr2/2

  21、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

  例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

  22、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

  例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

  圆周长和直径的比是π:1,比值是π

  圆周长和半径的比是2π:1,比值是2π

  23、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;

  当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  24、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几、

  25、当长方形,正方形,圆的`周长相等时,圆的面积最大,长方形的面积最小

  26、扇形弧长公式:扇形的面积公式:

  S=nπr2/360

  (n为扇形的圆心角度数,r为扇形所在圆的半径)

  27、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  28、有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

  有2条对称轴的图形是:长方形

  有3条对称轴的图形是:等边三角形

  有4条对称轴的图形是:正方形

  有无数条对称轴的图形是:圆、圆环。

  29、直径所在的直线是圆的对称轴。

  31、永远记住要带单位,周长是(例如:cm),面积是平方(例如:cm2),体积是立方(例如:cm3)。

  32、圆的周长:

  ×1= ×2=

  ×3= ×4=

  ×5= ×6=

  ×7= ×8=

  ×9= ×10=

  33、圆的面积:

  ×12= ×22=

  ×32= ×42=

  ×52= ×62=

  ×72= ×82=

  ×92= ×102=314

  第二单元分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

  ①如果是同一级运算,按照从左到右的顺序依次计算。

  ②如果是分数连乘,可先进行约分,再进行计算;

  ③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

  2、解决问题

  (1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:

  第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

  第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

  (2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”

  第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

  第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

  (3)用方程解决稍复杂的分数应用题的步骤:

  ①要找准单位“1”。

  ②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

  ③设未知量为X,根据等量关系式,列出方程。

  ④解答方程。

  (4)要记住以下几种算术解法解应用题:

  ①对应数量÷对应分率=单位“1”的量

  ②求一个数的几分之几是多少,用乘法计算。

  ③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

  3、要记住以下的解方程定律:

  加数+加数=和;

  加数=和–另一个加数。

  被减数–减数=差;

  被减数=差+减数;

  减数=被减数–差。

  因数×因数=积;

  因数=积÷另一个因数。

  被除数÷除数=商;

  被除数=商×除数;

  除数=被除数÷商。

  4、绘制简单线段图的方法:

  分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:

  ①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

  ②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。

  ③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。

  ④问题所求要标出“?”号和单位。

  5、补充知识点

  分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  分数乘法的计算法则

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零、。

  分数乘法意义

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  分数乘整数:数形结合、转化化归

  倒数:乘积是1的两个数叫做互为倒数。

  分数的倒数

  找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3、3/4是4/3的倒数,也可以说4/3是3/4的倒数。

  整数的倒数

  找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

  小数的倒数

  普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

  用1计算法:也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

  分数除法:分数除法是分数乘法的逆运算。

  分数除法计算法则:

  甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

  分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

  第三单元观察物体

  1、观察物体一般从正面、上面、左面或右面来观察。

  2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;离光源越远,这个物体的影子就越长。

  3、站得高,才能望得远。

  4、确定观察的范围:

  1)先找到观察点、障碍点;

  2)连接观察点和障碍点后确定观察的范围。

  5、看不到的地方称作盲区。

  第四单元百分数的认识

  1、百分数的意义

  像84%,28%,……这样的数叫作百分数,表示一个数是另一个数的百分之几。百分数也叫百分比、百分率。百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。

  2、百分数的读法和写法

  ①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。

  ②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。

  3、百分数和分数的区别

  ①意义不同

  百分数只表示一个数是另一个数的百分之几。它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。

  ②写法不同

  百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。

  百分数的最后结果中的分子可以是整数,也可以是小数。如:18%,180%

  4、小数、分数、百分数的互化

  ①把小数化成百分数的方法:

  先把小数点向右移动两位,再在数的后面直接添上“%”,如

  ②把分数化成百分数的方法:

  可以先把分数化成分母是100的分数,再改写成百分数,如3/5=(除不尽的保留三位小数)。

  ③把百分数化成小数的方法:

  先把“%”去掉,同时把小数点向左移动两位,当移动的位数不够时,要添0补位。

  ④把百分数化成分数的方法:

  先把百分数改写成分母是100的分数,能约分的要约分成最简分数。当百分数的分子是小数时,要要根据分数的基本性质把分子和分母同时扩大相同的倍数,把分子变成整数后能约分的再约分。

  5、求一个数是另一个数的百分之几的方法

  求一个数是另一个数的百分之几的方法与求一个数是另一个数的几分之几的方法相同,就是用这个数除以另一个数,除不尽时通常保留三位小数,然后把小数点向右移动两位,再在数的后面加上%

  6、求百分率的方法:

  百分率一般是指部分占总体的百分之几。如合格率就是合格的产品数量占产品数量的百分之几。及格率就是及格人数占总人数的百分之几。结果用百分数的形式表示。

  常考的几种百分率:

  合格的数量÷总数量×100%=合格率

  及格的人数÷总人数×100%=及格率

  发芽的数量÷总数量×100%=发芽率

  优秀的人数÷总人数×100%=优秀率

  出席的人数÷总人数×100%=出席率

  缺席的人数÷总人数×100%=缺席率

  命中的次数÷总次数×100%=命中率

  7、求一个数的百分之几是多少的实际问题的解法

  与求一个数的几分之几是多少的问题的解答方法相同,都是用乘法来计算,用这个数乘百分之几。计算时可以把这个数化成小数来计算,也可以把这个数化成分数来计算,要根据具体情况分析,选择简便的计算方法。

  第五单元数据处理

  三种统计图:

  条形统计图(表示各个量的多少)

  折线统计图(表示数量多少、反映增减变化)

  扇形统计图(表示部分与整体的关系)。

  一、绘制条形统计图(主要是用于比较数量大小)

  1、写出统计图的标题,在上方的右侧表明制图日期。

  2、确定横轴、纵轴。

  3、在横轴上适当分配条形的位置,确定条形的宽度和间隔。(直条的宽窄要一致,间隔也要一致,单位长度要统一)

  4、纵轴上确定单位长度。确定单位长度所代表的量要根据最大和最小的来综合考虑。

  5、根据数据的大小画出长短不同的直条。

  6、给直条图形不同的颜色(或底纹),并在统计图右上角注明图例。

  二、关于复试条形统计图

  1、制作复试条形统计图与单式条形统计图的制作方法相同。只是在每组数据中各量要用颜色或底纹区分。

  2、复试条形统计图———直条的宽窄要一致,间隔要一致,单位长度要统一。

  3、运用横向、纵向、综合、对比等不同方法观察,可以读懂复试条形统计图,从中获取尽可能多的信息。

  4、复试条形统计图有纵向和横向两种画法。

  三、绘制复试折线统计图(不仅可以比较大小,还可以比较数量变化的快慢)

  a、只有一条折线的折线统计图叫做单式折线统计图。

  b、用不同的折线表示不同的数量变化情况的折线统计图叫做复试折线统计图。

  考点:三种单式统计图和两种复式统计图。

  1、三种统计图:条形统计图表示数量的多少、折线统计图表示数量多少、反映增减变化、扇形统计图表示部分与整体的关系。

  2、复式条形统计图:用两种不同的条形来分别表示不同的类型。复式折线统计图:用两条不同的线来表示,一条用实线,另一条用虚线。

  3、反映某城市一天气温变化,最好用折线统计图,反映某校六年级各班的人数,用(条形)统计图比较好,反映笑笑家食品支出占全部支出的多少,最好用扇形统计图。

  第六单元比的认识

  (一)比的基本概念

  1、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

  2、比值通常用分数、小数和整数表示。

  3、比的后项不能为0。

  4、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

  5、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

  6、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

  (二)求比值

  1、求比值:用比的前项除以比的后项

  (三)化简比

  1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。

  (四)比的应用

  1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?

  例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?

  题目解析:60人就是男女生人数的和。

  解题思路:第一步求每份:60÷(5+7)=5人

  第二步求男女生:男生:5×5=25人女生:5×7=35人。

  2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?

  例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?

  题目解析:“男生25人”就是其中的一个数量。

  解题思路:第一步求每份:25÷5=5人

  第二步求女生:女生:5×7=35人。全班:25+35=60人

  3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?

  例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?

  4、要求量=已知量×要求量份数/已知量份数

  5、比在几何里的运用:

  (1)已知长方形的周长,长和宽的比是a:b。求长和宽、面积。

  长=周长÷2×a/(a+b)

  宽=周长÷2×b/(a+b)

  面积=长×宽

  (2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。求长、宽、高、体积

  长=周长÷4×a/(a+b+c)

  宽=周长÷4×b/(a+b+c)

  高=周长÷4×c/(a+b+c)

  体积=长×宽×高

  (3)已知三角形三个角的比是a:b:c,求三个内角的度数。

  三个角分别为:

  180×a/(a+b+c)

  180×b/(a+b+c)

  180×c/(a+b+c)

  (4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。

  三条边分别为:

  周长×a/(a+b+c)

  周长×b/(a+b+c)

  周长×c/(a+b+c)

  第七单元百分数的应用

  百分数的基本概念

  1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。

  2、百分数的意义:表示一个数是另一个数的百分之几。

  例如:25%的意义:表示一个数是另一个数的25%。

  3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

  4、小数与百分数互化的规则:

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  5、百分数与分数互化的规则:

  把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

小学数学知识点总结13

  棱锥:棱锥是小学数学的基础内容,小学毕业试题中分值约为4分,多以选择题,填空题,判断题的形式出现,难易度属于简单。近几年主要考察:①棱锥的体积问题。②棱锥的侧面积问题。突破方法:牢固掌握有关棱锥的概念,边角之间的关系。这个要通过一定量的练习来掌握。

  认识位置与方向:认识位置与方向是小学数学的基础内容,小学毕业试题中分值约为3-6分,多以选择题,填空题,简答题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①给出三视图,说出组成物体最少或最多立方体的个数。②给出物体,画出三视图。突破方法:①平时注意积累。②熟练掌握三视图的画法。

  图形的直观认识:图形的直观认识是小学数学的基础内容,小学毕业试题中分值约为6-12分,多以选择题,填空题,证明题的形式出现,难易度属于中等。主要考察一下几个方面:①圆的问题,多数是计算题。②三角形的计算问题。突破方法:①对圆的各个性质熟记,能简单画图。②熟练掌与三角形有关的性质等等。

  直线和线段:直线和线段是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①线段长度的计算。②数轴上点的距离问题。突破方法:①掌握有关线段的比,线段的中点的概念。②熟练掌握数轴概念。

  角的初步认识:角的初步认识是小学数学的基础内容,小学数学试题中分值约为3-6分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①角的分类。②角的计算。突破方法:①牢固掌握有关角的概念。②熟练掌握角的计算问题,特别是是多个角的问题。

  长方形与正方形:长方形与正方形是小学数学的基础内容,小学毕业试题中分值约为5-10分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①面积和周长问题。②体积,边长问题。突破方法:①牢固掌握有关长方形与正方形的概念:如边,对边,角等,特别是对角线的概念。②熟练掌握长方形与正方形的各种性质。

  平行四边形:平行四边形是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下两个个方面:①平行四边形的周长与面积。②等腰梯形的周长和面积。突破方法:①牢固掌握有关平行四边形的性质。②等腰梯形的.性质等等。三角形:三角形是小学几何的基础内容,也是最重要的部分之一。小学试题中分值约为7-13分,证明题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①三角形的内角和,三角形的外角和,三角形的外角等等。②多边形的内角和及组合图形等等。突破方法:①牢固掌握有三角形的概念:如内角和,外角和,外角等,特别是三角形的各边之间的关系。②熟练掌握多边形的内角和,正多边形有关角的运算。在证明过程中特别注意步骤的合理性。

  圆:圆是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①圆的面积。②圆的周长,有时用会降低题目的难度。突破方法:①牢固掌握有关圆的性质。②熟练掌握扇形,环形的面积公式。

  轴对称图形:轴对称图形是小学数学基础内容,小学毕业试题中分值约为4分,多以选择题,判断题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①图形有几条对称轴。②轴对称和中心对称的综合应用。突破方法:①牢固掌握有关轴对称图形的概念。②平时注意积累,会区分轴对称图形和中心对称图形。

  作图题(操作题):作图题(操作题)是小学数学的基础内容,小学毕业试题中分值约为6分,多以选择题,填空题,简答题的形式出现,难易度属于难,近几年分值由增大的趋势。近几年主要考察一下几个方面:①图形的旋转问题。②影长问题。③平移图像的问题。突破方法:作图题试题开放,联系实际,要求学生进行多方位,多角度,多层次的探究,考查了学生思维的灵活性,发散性,创新性,平时注意动手总结。

  扩展阅读:

小学数学知识点总结14

  1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。

  2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。

  3、一个数乘分数的意义:可以看做是求这个数的几分之几。

  4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。

  5、整数乘法的交换律,结合律,分配率,对分数同样适用。

  6、乘积是一的两个数互为倒数。

  7、 2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的意义:分数与整数的意义相同。

  8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几? (甲-乙)÷乙3.甲比乙少几分之几? (乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的.意义:两数相除就叫做两个数的比比的前项相当于被除数,后项相当于除数,比值相当于商。

  9、前项相当于分子,后项相当于分母,比值相当于分数的值。

  10、 5单元圆圆是一种平面曲线图形。

  11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的数叫百分数。

  12、百分数也叫百分率和百分比。

  13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。

  15、 7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。

  16、扇形统计图的特点:能够更清楚地了解个部分和总数的关系。

  17、折线统计图的特点:不但可以表示出数量的多少,而且还能更清楚地表示数量的变化趋势。

  18、条形统计图的特点:能够清楚的看出数量的多少。

  19、 8单元数学广角用列方程或假设法。

小学数学知识点总结15

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的.。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

【小学数学知识点总结】相关文章:

小学数学的知识点总结12-01

小学数学的知识点总结08-10

小学数学知识点总结08-20

小学数学知识点归纳总结03-06

小学数学知识点总结集锦03-10

【优秀】小学数学的知识点总结15篇08-10

小学数学必备知识点03-20

数学高考知识点总结06-18

数学高考知识点总结08-20

数学中考知识点总结07-16