小学知识

小学数学知识点归纳总结

时间:2024-10-19 17:02:41 晓怡 小学知识 我要投稿
  • 相关推荐

小学数学知识点归纳总结

  在学习中,很多人都经常追着老师们要知识点吧,知识点就是学习的重点。为了帮助大家更高效的学习,下面是小编为大家整理的小学数学知识点归纳总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学数学知识点归纳总结

  小学数学知识点归纳总结 篇1

  一、小学生数学法则知识归类

  (1)笔算两位数加法,要记三条

  1、相同数位对齐;

  2、从个位加起;

  3、个位满10向十位进1。

  (2)笔算两位数减法,要记三条

  1、相同数位对齐;

  2、从个位减起;

  3、个位不够减从十位退1,在个位加10再减。

  (3)混合运算计算法则

  1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

  2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

  3、算式里有括号的要先算括号里面的。

  (4)四位数的读法

  1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

  2、中间有一个0或两个0只读一个“零”;

  3、末位不管有几个0都不读。

  (5)四位数写法

  1、从高位起,按照顺序写;

  2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

  (6)四位数减法也要注意三条

  1、相同数位对齐;

  2、从个位减起;

  3、哪一位数不够减,从前位退1,在本位加10再减。

  (7)一位数乘多位数乘法法则

  1、从个位起,用一位数依次乘多位数中的每一位数;

  2、哪一位上乘得的积满几十就向前进几。

  (8)除数是一位数的除法法则

  1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

  2、除数除到哪一位,就把商写在那一位上面;

  3、每求出一位商,余下的数必须比除数小。

  (9)一个因数是两位数的乘法法则

  1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  3、然后把两次乘得的数加起来。

  (10)除数是两位数的除法法则

  1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

  2、除到被除数的哪一位就在哪一位上面写商;

  3、每求出一位商,余下的数必须比除数小。

  (11)万级数的读法法则

  1、先读万级,再读个级;

  2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  (12)多位数的读法法则

  1、从高位起,一级一级往下读;

  2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  (13)小数大小的比较

  比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

  (14)小数加减法计算法则

  计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

  (15)小数乘法的计算法则

  计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  (16)除数是整数除法的法则

  除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  (17)除数是小数的除法运算法则

  除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  (18)解答应用题步骤

  1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

  2、确定每一步该怎样算,列出算式,算出得数;

  3、进行检验,写出答案。

  (19)列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

  (20)同分母分数加减的法则

  同分母分数相加减,分母不变,只把分子相加减。

  (21)同分母带分数加减的法则

  带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  (22)异分母分数加减的法则

  异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  (23)分数乘以整数的计算法则

  分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  (24)分数乘以分数的计算法则

  分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

  (25)一个数除以分数的计算法则

  一个数除以分数,等于这个数乘以除数的倒数。

  (26)把小数化成百分数和把百分数化成小数的方法

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

  把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

  (27)把分数化成百分数和把百分数化成分数的方法

  把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

  把百分数化成小数,先把百分数改写成分母是100的分数,能约分的`要约成最简分数。

  二、小学数学口决定义归类

  1、什么是图形的周长?

  围成一个图形所有边长的总和就是这个图形的周长。

  2、什么是面积?

  物体的表面或围成的平面图形的大小叫做他们的面积。

  3、加法各部分的关系:

  一个加数=和-另一个加数

  4、减法各部分的关系:

  减数=被减数-差 被减数=减数+差

  5、乘法各部分之间的关系:

  一个因数=积÷另一个因数

  6、除法各部分之间的关系:

  除数=被除数÷商 被除数=商×除数

  7、角

  (1)什么是角?

  从一点引出两条射线所组成的图形叫做角。

  (2)什么是角的顶点?

  围成角的端点叫顶点。

  (3)什么是角的边?

  围成角的射线叫角的边。

  (4)什么是直角?

  度数为90°的角是直角。

  (5)什么是平角?

  角的两条边成一条直线,这样的角叫平角。

  (6)什么是锐角?

  小于90°的角是锐角。

  (7)什么是钝角?

  大于90°而小于180°的角是钝角。

  (8)什么是周角?

  一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.

  8、垂直问题

  (1)什么是互相垂直?什么是垂线?什么是垂足?

  两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  (2)什么是点到直线的距离?

  从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。

  9、三角形

  (1)什么是三角形?

  有三条线段围成的图形叫三角形。

  (2)什么是三角形的边?

  围成三角形的每条线段叫三角形的边。

  (3)什么是三角形的顶点?

  每两条线段的交点叫三角形的顶点。

  (4)什么是锐角三角形?

  三个角都是锐角的三角形叫锐角三角形。

  (5)什么是直角三角形?

  有一个角是直角的三角形叫直角三角形。

  (6)什么是钝角三角形?

  有一个角是钝角的三角形叫钝角三角形。

  (7)什么是等腰三角形?

  两条边相等的三角形叫等腰三角形。

  (8)什么是等腰三角形的腰?

  有等腰三角形里,相等的两个边叫做等腰三角形的腰。

  (9)什么是等腰三角形的顶点?

  两腰的交点叫做等腰三角形的顶点。

  (10)什么是等腰三角形的底?

  在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

  (11)什么是等腰三角形的底角?

  底边上两个相等的角叫等腰三角形的底角。

  (12)什么是等边三角形?

  三条边都相等的三角形叫等边三角形,也叫正三角形。

  (13)什么是三角形的高?什么叫三角形的底?

  从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

  (14)三角形的内角和是多少度?

  三角形内角和是180°.

  10、四边形

  (1)什么是四边形?

  有四条线段围成的图形叫四边形。

  (2)什么是平等四边形?

  两组对边分别平行的四边形叫做平行四边形。

  (3)什么是平行四边形的高?

  从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

  (4)什么是梯形?

  只有一组对边平行的四边形叫做梯形。

  (5)什么是梯形的底?

  在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

  (6)什么是梯形的腰?

  在梯形里,不平等的一组对边叫梯形的腰。

  (7)什么是梯形的高?

  从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

  (8)什么是等腰梯形?

  两腰相等的梯形叫做等腰梯形。

  11、什么是自然数?

  用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

  12、什么是四舍五入法?

  求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  13、加法意义和运算定律

  (1)什么是加法?

  把两个数合并成一个数的运算叫加法。

  (2)什么是加数?

  相加的两个数叫加数。

  (3)什么是和?

  加数相加的结果叫和。

  (4)什么是加法交换律?

  两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  14、什么是减法?

  已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

  15、什么是被减数?什么是减数?什么叫差?

  在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

  16、加法各部分间的关系:

  和=加数+加数 加数=和-另一加数

  17、减法各部分间的关系:

  差=被减数-减数 减数=被减数-差 被减数=减数+差

  18、乘法

  (1)什么是乘法?

  求几个相同加数的和的简便运算叫乘法。

  (2)什么是因数?

  相乘的两个数叫因数。

  (3)什么是积?

  因数相乘所得的数叫积。

  (4)什么是乘法交换律?

  两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

  (5)什么是乘法结合律?

  三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  19、除法

  (1)什么是除法?

  已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  (2)什么是被除数?

  在除法中,已知的积叫被除数。

  (3)什么是除数?

  在除法中,已知的一个因数叫除数。

  (4)什么是商?

  在除法中,求出的未知因数叫商。

  20、乘法各部分的关系:

  积=因数×因数 一个因数=积÷另一个因数

  21、除法

  (1)除法各部分间的关系:

  商=被除数÷除数 除数=被除数÷商

  (2)有余数的除法各部分间的关系:

  被除数=商×除数+余数

  22、什么是名数?

  通常量得的数和单位名称合起来的数叫名数。

  23、什么是单名数?

  只带有一个单位名称的数叫单名数。

  24、什么是复名数?

  有两个或两个以上单位名称的数叫复名数。

  25、什么是小数?

  仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

  26、什么是小数的基本性质?

  小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

  27、什么是有限小数?

  小数部分的位数是有限的小数叫有限小数。

  28、什么是无限小数?

  小数部分的位数是无限的小数叫无限小数。

  29、什么是循环节?

  一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

  30、什么是纯循环小数?

  循环节从小数第一位开始的叫纯循环小数。

  31、什么是混循环小数?

  循环节不是从小数部分第一位开始的叫做混循环小数。

  32、什么是四则运算?

  我们把学过的加、减、乘、除四种运算统称四则运算。

  33、什么是方程?

  含有未知数的等式叫方程。

  34、什么是解方程?

  求方程解的过程叫解方程。

  35、什么是倍数?什么叫约数?

  如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

  36、什么样的数能被2整除?

  个位上是0、2、4、6、8的数都能被2整除。

  37、什么是偶数?

  能被2整除的数叫偶数。

  38、什么是奇数?

  不能被2整除的数叫奇数。

  39、什么样的数能被5整除?

  个位上是0或5的数能被5整除。

  40、什么样的数能被3整除?

  一个数的各位上的和能被3整除,这个数就能被3整除。

  41、什么是质数(或素数)?

  一个数如果只有1和它本身两个约数,这样的数叫质数。

  42、什么是合数?

  一个数除了1和它本身还有别的约数,这样的数叫合数。

  43、什么是质因数?

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

  44、什么是分解质因数?

  把一个合数用质因数相乘的形式表示出来叫做分解质因数。

  45、什么是公约数?什么叫最大公约数?

  几个数公有的约数叫公约数。其中最大的一个叫最大公约数。

  46、什么是互质数?

  公约数只有1的两个数叫互质数。

  47、什么是公倍数?什么是最小公倍数?

  几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。

  48、分数

  (1)什么是分数?

  把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

  (2)什么是分数线?

  在分数里中间的横线叫分数线。

  (3)什么是分母?

  分数线下面的部分叫分母。

  (4)什么是分子?

  分数线上面的部分叫分子。

  (5)什么是分数单位?

  把单位“1”平均分成若干份,表示其中的一份叫分数单位。

  49、怎么比较分数大小?

  (1)分母相同的两个分数,分子大的分数比较大。

  (2)分子相同的两个分数,分母小的分子比较大。

  (3)什么是真分数?

  分子比分母小的分数叫真分数。

  (4)什么是假分数?

  分子比分母大或者分子和分母相等的分数叫假分数。

  (5)什么是带分数?

  由整分数和真分数合成的数通常叫带分数。

  (6)什么是分数的基本性质?

  分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

  (7)什么是约分?

  把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

  (8)什么是最简分数?

  分子、分母是互质数的分数叫最简分数。

  50、比

  (1)什么是比?

  两个数相除又叫两个数的比。

  (2)什么是比的前项?

  比号前面的数叫比的前项。

  (3)什么是比的后项?

  比号后面的数叫比的后项。

  (4)什么是比值?

  比的前项除以后项所得的商叫比值。

  (5)什么是比的基本性质?

  比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  51、长方体和正方体

  (1)什么是棱?

  两个面相交的边叫棱。

  (2)什么是顶点?

  三条棱相交的点叫顶点。

  (3)什么是长方体的长、宽、高?

  相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

  (4)什么是正方体(立方体)?

  长宽高都相等的长方体叫正方体(或立方体)。

  (5)什么是长方体的表面积?

  长方体六个面的总面积叫长方体的表面积。

  (6)什么是物体体积?

  物体所占空间的大小叫做物体的体积。

  52、圆

  (1)什么是圆心?

  圆中心的点叫圆心。

  (2)什么是半径?

  连接圆心和圆上任意一点的线段叫半径。

  (3)什么是直径?

  通过圆心、并且两端都在圆上的线段叫直径。

  (4)什么是圆的周长?

  围成圆的曲线叫圆的周长。

  (5)什么是圆周率?

  我们把圆的周长和直径的比值叫圆周率。

  (6)什么是圆的面积?

  圆所围平面的大小叫圆的面积。

  (7)什么是扇形?

  一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

  (8)什么是弧?

  在圆上两点之间的部分叫弧。

  (9)什么是圆心角?

  顶点在圆心上的角叫圆心角。

  (10)什么是对称图形?

  如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

  53、什么是百分数?

  表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。

  54、比例

  (1)什么是比例?

  表示两个比相等的式子叫比例。

  (2)什么是比例的项?

  组成比例的四个数叫比例的项。

  (3)什么是比例外项?

  两端的两项叫比例外项。

  (4)什么是比例内项?

  中间的两项叫比例内项。

  (5)什么是比例的基本性质?

  在比例中两个外项的积等于两个内项的积。

  (6)什么是解比例?

  求比例中的未知项叫解比例。

  (7)什么是正比例关系?

  两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。

  (8)什么是反比例关系?

  两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。

  55、圆柱

  (1)什么是圆柱底面?

  圆柱的上下两个面叫圆柱的底面。

  (2)什么是圆柱的侧面?

  圆柱的曲面叫圆柱的侧面。

  (3)什么是圆柱的高?

  圆柱两个底面的距离叫圆柱的高。

  三、小学数学量的计算单位及进率归类

  1、长度计量单位及进率:

  千米(公里)、米、分米、厘米、毫米

  1千米=1公里 1千米=1000米

  1米=10分米 1分米=10厘米

  1厘米=10毫米

  2、面积计量单位及进率:

  平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷

  1平方千米=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  3、体积容积计量单位及进率:

  立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升 1立方厘米=1毫升

  4、质量单位及进率:

  吨、千克、公斤、克

  1吨=1000千克

  1千克=1公斤

  1千克=1000克

  5、时间单位及进率:

  世纪、年、月、日、小时、分、秒

  1世纪=100年 1年=12月

  1天=24小时 1小时=60分

  1分=60秒

  (31天的月份有1、3、5、7、8、10、12月份, 30天的月份有4、6、9、11月份, 平年2月28天,闰年2月29天)

  四、常用计算公式表

  1、长方形面积

  =长×宽,计算公式S=ab

  2、正方形面积

  =边长×边长,计算公式S=a×a=a2

  3、长方形周长

  =(长+宽)×2,计算公式C=(a+b)×2

  4、正方形周长

  =边长×4,计算公式C=4a

  5、平行四边形面积

  =底×高,计算公式S=ah

  6、三角形面积

  =底×高÷2,计算公式S=a×h÷2

  7、梯形面积

  =(上底+下底)×高÷2,计算公式S=(a+b)×h÷2

  8、长方体体积

  =长×宽×高,计算公式V=abh

  9、圆的面积

  =圆周率×半径平方,计算公式V=πr2

  10、正方体体积

  =棱长×棱长×棱长,计算公式V=a3

  11、长方体和正方体的体积

  都可以写成底面积×高,计算公式V=sh

  12、圆柱的体积

  =底面积×高,计算公式V=sh

  小学数学知识点归纳总结 篇2

  1.如果是谁拿到最后一个谁就赢,那么公式就是:

  总数÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第1题。

  如果是谁拿到最后一个谁就输,那么公式就是

  2.(总数-1)÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第2题

  练习

  1.箱子里装了16个球,乐乐和聪聪轮流从中拿1个球或者2个球,谁拿到最后一个球谁就获胜?如果聪聪先拿,第一次应该拿几个球才能确保获胜?每人轮流从中拿1个或者2个,那么作为聪聪就要首先保证他和乐乐拿的球数的和是2+1=3,也就是乐乐拿一个聪聪就拿2个,乐乐拿2个,聪聪拿1个,16÷(2+1)=5…… 1,所以聪聪先拿走剩下的一个,那么剩下的无论乐乐拿1个还是2个,聪聪只要保证和他的和是3个就可以了。

  2.试卷:54张扑克牌,甲乙两人轮流拿,每人每次只拿1---4张,谁拿到最后一张谁就输,若甲先拿牌,怎样拿牌保证甲获胜

  问题关键:是保证获胜,因此我们用的方法必须确保甲一定获胜。

  要想保证甲获胜,首先得保证甲拿到的是第53张牌,那么乙肯定拿到是第54张牌,乙肯定就输了,而每人轮流是拿1-4张,那么为了确保获胜,必须保证甲和乙拿的牌数的.和是5,也就是如果乙拿1张,甲就拿4张,乙拿2张,甲就拿3张,乙拿3张,甲就拿2张,乙拿4张,甲就拿1张,和是5,53里边有几个5呢?(54-1)÷(1+4)=10…… 3,所以甲先把多余的3张先拿走,剩下的无论乙怎么拿,只要每次保证每次拿的张数的和是5就可以了。

  分数乘法意义

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  世界最大的数和最小的数

  最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

  目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

  没有最小的数字,但有最小的自然数,就是“0”。

  小学数学知识点归纳总结 篇3

  第一课时:什么是周长

  【知识点】:

  1、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

  2、学生在动手操作中,可以画出并能计算出图形的周长。

  第二课时 游园

  【知识点】:

  1、为学生创设游园的情境,引导学生体验用不同的方法去计算小公园的周长。就是把围成小公园的所有线段加在一起。

  2、算一算中出现了4种不同的图形,鼓励学生用多种方法计算,为后面学习长方形、正方形周长的计算作好铺垫。

  第三课时 花边有多长

  【知识点】:

  1、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。

  2、在做一做中出现的两个不同的长方形可以让学生用自己喜欢的方法求周长。

  第四课时 地砖的周长

  【知识点】:

  1、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的`四条边长加起来,还可以用边长乘4。

  2、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。

  3、练一练中的第2小题要让学生明确求篱笆长多少米,就是在求正方形实验园地的周长。

  第五课时 练习六

  【知识点】:

  1、练习六中的1——8小题通过计算各种图形的不同周长,进一步巩固学生已经掌握的计算周长的方法。

  而第9小题则是让学生发现图形之间的变化关系,从而发现这四幅图形的周长是相等的。

  2、在实践活动中,可以让学生先计算三个周长的大小,并说出估计的过程或理由,然后再让学生自主选择测量工具和测量方式。可以独立测量,也可以是小组合作进行,最后组织学生对其估计和测量的结果进行对比,修正自己的估计和测量的结果。

  第六课时 交通与数

  【知识点】:

  在这节实践活动课中,要引导学生认真仔细的观察图片中的数学信息,从而运用周长、乘除法、搭配方法等数学知识和方法来解决实际生活中的简单问题。

  小学数学知识点归纳总结 篇4

  1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

  利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

  2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

  3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

  4、解决问题

  (1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

  (2)求总数的实际问题,用加法计算。

  数学学习方法诀窍

  正确对待考试

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  细心地发掘概念和公式

  很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

  二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

  我们的.建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

  多项式定义

  在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

  小学数学知识点归纳总结 篇5

  1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

  其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

  分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  厘米:长度单位,简写符号为:cm。

  毫米:英文缩写为mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

  4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

  1不能够减去2,所以必须向高位的5借位。

  5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

  6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

  7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

  苏教版小学数学学习方法

  学习数学方法一:课前预习:

  一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

  学习数学方法二:课后复习:

  同预习一样,是个老生常谈的话题,但也是行之有效的'方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

  学习数学方法三:涉猎课外习题:

  想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。

  学习数学方法四:记笔记:

  这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

  苏教版小学数学学习技巧

  列表记忆

  就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三

  重点记忆

  随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率×工作时间=工作量。工作量÷工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样去记,减轻了学生记忆的负担,提高了记忆的效率。

  小学数学知识点归纳总结 篇6

  角:

  (1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

  所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号:∠

  角的种类:角的大小与边的长短没有关系;角的'大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

  在动态定义中,取决于旋转的方向与角度。

  角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

  以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  乘法:

  乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  乘法算式中各数的名称:

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)2000(积)

  平行:

  在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  垂直:

  两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  平行四边形:

  在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  梯形:

  梯形是指一组对边平行而另一组对边不平行的四边形。

  平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  除法:

  除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

  小学数学知识点归纳总结 篇7

  【数学公式】

  数量关系计算公式

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  6、一个加数=和—另一个加数

  7、被减数—减数=差

  8、减数=被减数—差

  9、被减数=减数+差

  10、因数×因数=积

  11、一个因数=积÷另一个因数

  12、被除数÷除数=商

  13、除数=被除数÷商

  14、被除数=商×除数

  15、有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  1公里=1千米

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1平方米=100平方分米

  1平方分米=100平方厘米

  【珠算读写数】

  小小珠算真神奇,读数写数最容易。

  四位一级是关键,读写都从高位起。

  级前中0读一个,级末有0不读起。

  亿级万级仿个级,读完后面加单位。

  一级一级往下写,珠不靠梁0占位。

  【多位数的大小比较】

  多位数大小看位数,位数多的数就大。

  位数相同看高位,高位数大数就大。

  【分数大小的比较】

  分数大小的比较,分子、分母要记好。

  分母相同看分子,分子大的分数大。

  分子相同看分母,分母大的分数小。

  【列方程解应用题】

  列方程解应用题,抓住关键去分析。

  已知条件换成数,未知条件换字母。

  找齐相关代数式,连接起来读一读。

  【计量单位对口歌】

  小朋友,快排队,手拉手对单位。看谁说得快又对。

  人民币单位元、角、分,进率是10要牢记。

  1元得10角,1角得10分,1元等于100分。

  米、分米、厘米和毫米。

  单位是千米。

  1米=10分米,1分米=10厘米,1厘米=10毫米。

  米和千米也相临,进率1000是特例。

  吨与千克还有克,进率1000要牢记。

  形体单位更容易,相临100是面积,相临1000是体积。

  大单位,小单位,大小换算有规律。

  从大到小乘进率,小数点向右移;从小到大除以进率,小数点向左移。

  进率是10移一位,进率100移两位,进率1000移三位。以此类推。

  【分解质因数】

  分解质因数,方法是短除。

  除数是质数,商也是质数。

  表示的形式很简单:合数=质数×质数

  公约数、公倍数与互质数

  公约数,公倍数,关键要把“公”记住。

  公有的约数叫做公约数,公约数中的,就叫公约数。

  如果公约数只有1,它们就叫互质数。

  公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。

  求法有区别,千万别失误。

  短除只把除数乘,是求公约数。

  除数和商要连乘,是求最小公倍数。

  【垂直平分线定理

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的.垂直平分线上

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  【基本函数有哪些

  正弦:sine余弦:cosine(简写cos)

  正切:tangent(简写tan)

  余切:cotangent(简写cot)

  正割:secant(简写sec)

  余割:cosecant(简写csc)

  小学数学知识点归纳总结 篇8

  1、已经学过的面积单位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公顷、平方千米(km2)。

  2、(1)边长是1厘米的正方形,面积是1平方厘米。

  (2)边长是1分米的正方形,面积是1平方分米。

  (3)边长是1米的正方形,面积是1平方米。

  (4)边长是100米的正方形,面积是1公顷。1公顷=10000平方米

  测量土地的面积,可以用公顷作单位。

  例如:鸟巢的占地面积约1公顷。400跑道围起来的部分的.面积大约是1公顷。

  (5)边长是1000米的正方形,面积是1平方千米。

  1平方千米=100公顷=1000000平方米

  我国陆地领土面积约为960万平方千米。

  3、面积单位之间的换算:

  (1)首先要记住它们之间的进率:

  1平方千米=100公顷=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方米=10000平方厘米

  (2)换算方法:

  ○1把高级单位化为低级单位,要用乘法计算,只要用高级单位前面的数去乘这两个单位之间的进率。(即高化低,乘进率,小数点向右移,移几位,看进率。)

  ○2把低级单位聚成高低级单位,要用除法计算,只要用低级单位前面的数去除以这两个单位之间的进率。(即低化高,除以进率,小数点向左移,移几位,看进率。)

  a、把公顷转化为平方米,只要在公顷前面的数据后面直接添写4个0。

  b、把平方米转化为公顷,只要在平方米前面的数据后面直接去掉4个0。

  c、把平方千米转化为公顷,只要在平方千米前面的数据后面直接添写2个0。

  d、把平方千米转化为平方米,只要在平方千米前面的数据后面直接添写6个0。

  e、把平方米转化为平方千米,只要在平方米前面的数据后面直接去掉6个0。

  4、填写面积单位的规律:

  (1)国土面积、省份(含直辖市)面积、省会城市面积、州(市)面积、县、乡镇面积、村委会、村庄面积、一般要用“平方千米”作单位。

  (2)公园、院(校)园、体育场(馆)等,一般要用“公顷”作单位。

  (3)房屋(建筑)面积、教室面积、校园绿化面积等,一般要用“平方米”作单位。

  小学数学知识点归纳总结 篇9

  1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  2.圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示

  3.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  4.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

  圆的半径或直径决定圆的大小,圆心决定圆的位置。

  5.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

  6.圆周率:圆的周长与直径的比值叫做圆周率。

  圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

  直径所对的圆周角是直角。90°的`圆周角所对的弦是直径。

  7.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。

  一条弧所对的圆周角是圆心角的二分之一。

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

  8.周长计算公式

  (1)已知直径:C=πd

  (2)已知半径:C=2πr

  (3)已知周长:D=c/π

  (4)圆周长的一半:1/2周长(曲线)

  (5)半圆的周长:1/2周长+直径(π÷2+1)

  9.面积计算公式:

  (1)已知半径:S=πr2

  (2)已知直径:S=π(d/2)2

  (3)已知周长:S=π[c÷(2π)]2

  小学数学知识点归纳总结 篇10

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的`口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

  小学数学知识点归纳总结 篇11

  1、只要是平均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5 = 6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1的被除数=商×除数+的余数;最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商??余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数-余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0; 0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的`数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  一些常见的分数化无限循环小数

  1/3=0.3333……

  1/6=0.1666……

  1/7=0.142857142857142857……

  1/9=0.1111……

  1/11=0.090909……

  1/99=0.010101……

  1/101=0.009900990099……

  1/111=0.009009009……

  几何形体周长面积体积计算公式

  1、长方形的周长=(长+宽)×2 C=(a+b)×2

  2、正方形的周长=边长×4 C=4a

  3、长方形的面积=长×宽S=ab

  4、正方形的面积=边长×边长S=a.a= a

  5、三角形的面积=底×高÷2 S=ah÷2

  6、平行四边形的面积=底×高S=ah

  7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

  8、直径=半径×2 d=2r半径=直径÷2 r= d÷2

  9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

  10、圆的面积=圆周率×半径×半径

  11、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

  12、长方体的体积=长×宽×高公式:V = abh

  13、正方体的表面积=棱长×棱长×6公式:S=6a2

  14、长方体(或正方体)的体积=底面积×高公式:V = abh

  小学数学知识点归纳总结 篇12

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的.图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。

  (2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

【小学数学知识点归纳总结】相关文章:

小学英语的主要知识点归纳总结03-30

物态变化知识点归纳02-14

小升初英语必备知识点归纳05-23

卫生资格《检验技师》知识点归纳02-27

小升初英语必背知识点归纳10-27

列举常用引导词归纳小升初知识点10-10

高中物理会考知识点考点归纳201704-02

小升初数学调研试卷达标练习归纳09-05

小学几何的知识点总结05-09