小学数学难题解法之巧妙解题方法

时间:2023-07-24 10:46:20 振濠 数学 我要投稿

小学数学难题解法之巧妙解题方法

  使用正确的解题方法不但可以大大加快解题的速度而且可以提高解题的正确率。下面是小编给大家整理的关于小学数学难题解法之巧妙解题方法,欢迎阅读!

小学数学难题解法之巧妙解题方法

  小学数学难题解法之巧妙解题方法 1

  模式法

  在解决问题时,寻找模式的思考方法是一种十分有效的策略。运用这种方法时,从问题的最简单例子或其变式着手,根据这些具体例子来发现其中的模式或规则,然后以此来获取问题的一般解。

  寻找模式,提出并检验猜想以及用公式表示判断准则,虽然不是数学的全部内容,但它们是数学思想、思维、概括数学知识的核心问题。

  例1 阶梯问题:造4步的阶梯需要方块10个,造10步的阶梯需要多少块?造20步的需要多少块?

  4步的阶梯,第一步用1块,第二步用2块(右边第二列),第三步用3块,等等。

  加起来就得到所需的总数:

  1+2+3+4=10

  建造10步的阶梯,可从四步的阶梯开始首先加上第五步的5块这一列,随之是第六步的6块这一列,等等,直到第10步。总数是:

  1+2+3+……+9+10=55(块)

  不难发现这样的模式:每加上一步所需的块数正好是这一步的顺序数。因此把1到20的整数相加就可得到20步阶梯的方块总数。然而要计算这个总和比较麻烦。要直接得到这个总和,除非有个计算公式。如果学生不熟悉这种公式,则可以从以下的数字资料中去寻找可能模式:

  4步阶梯 需要10块

  10步阶梯 需要55块

  能否察觉步数与所需块数之和间的关系?从仅有的两个例子来发现模式是有困难的,需要考察更多的特殊例子。为此可把一些比较简单的例子集中起来,将有关数据记录在表中。

  让学生试着去发现步数与所需块数之间的关系。因关系很不明显,学生只能看出得数是整数。这时如能作出一个猜想,并进而检验这个猜想,便是解决这个问题的良好开端。学生可以思考4与10、5与15、7与28等等有着怎样的关系。

  几次“追踪”后,可给学生指出(4×5)÷2=10,同样地(5×6)÷2=15。于是学生似乎感到有法则可依循。然后再一起来检验这个法则:(6×7)÷2=21,……(10×11)÷2=55,学生猜测几步阶梯所需的方块数总和是由公式n(n+1)÷2来确定的。在这个时候学生有理由相信20步阶梯所需的总块数是(20×21)÷2=210。但还不能完全肯定这个结果。

  我们所以要寻求规律,目的是要能够以此作出一个可以导致解决问题的一般公式的猜想或假设。但这必须小心谨慎,因为往往会出现所作的猜想对列举的例子是成立的,而对于一般化的问题却不成立的情况。

  只有猜想得到了证明,才是求得了一般解的公式,为此必须确立猜想的有效性。可以通过以下两者之一来实现:

  (1)归纳。证明法则在第一个例子中是成立的、假定对某个给定的例子的前面所有例子都成立,证明某个给定的例子后一个例子也成立,由此可证得猜想成立。

  (2)演绎。根据已知的事实,通过逻辑推理而导出。只有在这时猜想才可称作判断准则。如果能找出一个不满足猜想的例子,则就足以否定猜想的有效性。

  怎样确定阶梯的步数与所需的块数之间的假设关系是有效的呢?学生猜测所需的方块数是由n(n+1)÷2式确定的。n是步数,学生可以通过实验来验证这个猜想。在建造阶梯的过程中学生已经看到,如果有n步,需要的块数是前n个自然数的和,即

  1+2+3+…+(n-2)+(n-1)+n

  如果第一个数加最后一个数,和是n+1;第二个数加上倒数第二个数,得2+(n-1)=n+1;第三个数加上倒数第三个数,得3+(n-2)=n+1。同样的方法连续配对相加,各对数的和均是n+1。

  这就是所作的猜想。这样,就得到了判断前n个自然数的和的方法即法则,同时也解决了原先的问题。

  例2 根据模式

  你能预测下图的结果吗?

  仔细审视考察表:

  可以作出何种猜想?分析这个表可发现区域数是由公式2n-1确定的,其中n是点子数。n=1、2、3、4、5都是正确的。

  根据相应的法则,6个点的区域数应是数26-1=32,但实际上不是这个数字,而是30或31(见图)。所以这个猜想不能概括为法则。

  小学数学难题解法之巧妙解题方法 2

  将某一问题化归为另一问题,将某些条件或数量关系化归为另外的条件或关系,变难为易,变复杂为简单。

  此题具有与追及问题类似的数量关系:甲每天修筑12米,相当于甲的“速度”;乙每天修筑10米,相当于乙的“速度”,乙队先修2天,就是乙先修10×2=20(米),又要甲比乙多修10米,相当于追及“间隔”是20+10=30(米)。

  由此可用追及问题的思维方法解答,即

  追及“间隔”÷“速度”差=追及时间

  (10×2+10)÷(12-10)=15(天)

  此题假设按一般思路解答起来比拟困难,假设归为“鸡兔问题”解答那么简便易懂。

  把1个大灯球下缀2个小灯球看成鸡,把1个大灯球下缀4个小灯球看成免。那么,1个大灯球缀2个小灯球的盏数为:

  (360×4-1200)÷(4-2)=120(盏)

  1个大灯球下缀4个小灯球的盏数为:

  360-120=240(盏)

  或(1200-2×360)÷(4-2)=240(盏)

  根据题意,在预定时间内,每小时加工4件,那么还有(4×2)件未加工完,假设每小时加工6件,那么超额(“不定”)(6×1)件。符合《盈亏问题》条件。

  在算术中,一定人数分一定物品,每人分的少那么有余(盈),每人分的多那么缺乏(亏),这类问题称盈亏问题。其算法是:

  人数=(盈余+缺乏)÷分差(即两次每人分物个数之差)。

  物品数=每人分得数×人数。

  假设两次分得数皆盈或皆亏,那么

  人数=两盈(亏)之差÷分差。

  故有解:

  零件总数:4×7+4×2=36(件)

  或 6×7-6×1=36(件)

  按“相遇问题”解是比拟困难的,转化成为“工程问题”那么能顺利求解。

  快车每小时比慢车多行120÷6=20(千米)

  此题,看起来好似非要用方程解不可,其实它也可以用“工程问题”来解,把它化归为工程问题:“一件工作,甲独做3天完成,乙独做2天完成。如果两人合做完成这样的10件工作,乙做了几件?

  此题的人民币问题可看作是两位的倒转数问题,由两位数及其倒转数性质2知,小前的拾元币与壹元币张数差为63÷9=7,故

  小前拾元币为(15+7)÷2=11(张),壹元币为15-11=4(张)。

  小进有拾元币4张,壹元币11张。

  =3-0.6=2.4(千克)

  这种计算方法迅速、准确、便于心算。

  算理是:设同类量a份和b份,a份中每份的数量为m,b份中每份的数量为n((m≤n)。

  因为它们的总份数为a+b,总数量为ma+nb,加权平均数为:

  或:

  这种方法还可以推广,其算理也类似,如:

  某商店用单价为2.2元的甲级奶糖15千克,1.05元的乙级糖30千克和1元的丙级糖5千克配成什锦糖。求什锦糖的单价。

【小学数学难题解法之巧妙解题方法】相关文章:

小学数学难题解法大全之巧妙解题方法分析01-27

巧妙解决数学难题的解题方法11-23

小学数学难题解法07-06

小学数学难题解法应该怎么做09-01

小学数学解题基本方法11-14

数学解题方法07-30

数学解题思维方法01-27

数学解题的技巧与方法01-27

数学解题思路方法11-02

数学常用解题方法大全09-21