- 相关推荐
中考数学的复习资料
中考复习最忌心浮气躁,急于求成。指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。要扎扎实实地复习,一步一步地前进,下面是关于中考数学的复习资料的内容,欢迎阅读!

中考数学的复习资料 1
考点一、平移
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称
1、定义
把一个图形绕着某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P(—x,—y)。
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的'坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P(x,—y)。
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P(—x,y)。
中考数学的复习资料 2
一、课堂学习的习惯
课堂学习是学习活动的主要阵地。课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作。
1、会笔记 上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理。做笔记实际是对数学内容的浓缩提炼。要经常翻阅笔记,加强理解,巩固记忆。另外,做笔记还能使你的注意力集中,学习效率更高。
2、会比较 在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分。如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的。
3、会质疑 “学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问。积极提问是课堂学习中获得知识的重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维。学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍。
4、会分析 一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的。如做几何体时,将已知的`相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记。再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系。只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法。要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维。
5、会合作 英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的学习方式的重要性。我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见。在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力。
二、课外作业的习惯
课外作业是数学学习活动的一个组成部分,它包括:复习、作业等。
1、复习 及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容。首先凭大脑的追忆,想不起来再阅读课本及笔记。在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理。同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识。
2、作业 会学习的同学都是当天作业当天完成,先复习,后做作业。一定要独立完成,决不能依赖别人。书写一定要整洁,逻辑一定要条理。对作业要自我检查,及时改正存在的错误。
中考数学的复习资料 3
1、正数:像小学学过的大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、正数负数的判断方法:
⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。
⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。
4、 0的含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。
5、 具有相反意义的量;
6、 正负数的作用:在同一问题中,用正负数表示的'量具有相反的意义。
有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数.
有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
中考数学的复习资料 4
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
二、锐角三角比(2个考点)
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)
考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点11:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点13:二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
四、圆的相关概念(6个考点)
考点14:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从它们之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
五、数据整理和概率统计(9个考点)
考点20:确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21:事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22:等可能试验中事件的概率问题及概率计算
本考点的考核要求是
(1)理解等可能试验的'概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
在求解概率问题中要注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23:数据整理与统计图表
本考点考核要求是:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24:统计的含义
本考点的考核要求是:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25:平均数、加权平均数的概念和计算
本考点的考核要是:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26:中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28:中位数、众数、方差、标准差、频数、频率的应用
本考点的考核要是:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
中考数学的复习资料 5
中考数学复习资料之全等三角形的公式
一般来说考试中出现的线段和角相等需要证明全等,我们可以用全等的相应知识点来解题。
例1、已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.
分析:
(1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.
(2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160°.
(3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:
CE=CA-AE=BA-AD=6.
解:∵△ABE≌△ACD
∠C= 20°(已知)
∴∠ABE=∠C
=20°(全等三角形的对应角相等)
∴∠EBG=180°-∠ABE
=160°(邻补角的意义)
∵△ABE≌△ACD(已知)
∴AC=AB(全等三角形对应边相等)
AE=AD(全等三角形对应边相等)a
∴CE=CA-AE
=BA-AD
=6(等式性质)
分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。
初中数学正方形定理公式
关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式
同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式
下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2
,那么这个三角形是直角三角形(勾股定理的逆定理)。
以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。
初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的'成绩。
初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。
中考数学的复习资料 6
有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公式的几何意义
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础
相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
【考察内容】
①平行线的性质(公理)
②平行线的判别方法
③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①考察平面直角坐标系内点的坐标特征
②函数自变量的取值范围和球函数的值
③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
【考察内容】
①方程组的解法,解方程组
②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
【考察内容:】
①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
③留意不等式(组)和函数图像的结合问题。
(5)数据库的收集整理与描述
分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。
【考察内容】
①常见统计图和平均数,众数,中位数的计算分析。
②方差,极差的应用分析
③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。
三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。
(1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
【考查内容】
①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。
②三角形全等融入平行四边形的证明
③三角形运动,折叠,旋转,拼接形成的新数学问题
④等腰三角形的性质与判定,面积,周长等
⑤直角三角形的性质,勾股定理是重点
⑥三角形与圆的相关位置关系
⑦三角形中位线的性质应用
(2)全等三角形
(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
【考察内容】
①轴对称和轴对称图形的性质判别。
②注意镜面对称与实际问题的解决。
(4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公司的几何意义
③利用提公因式法和公式法分解因式。
(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
【考察内容】
①分式的概念,性质,意义
②分式的运算,化简求值。
③列分式方程解决实际问题。
二次根式、勾股定理、四边形、一次函数和数据的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。
【考察内容】
①常见锐角的三角函数值的计算
②根据图形计算距离,高度,角度的应用题
③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。
(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。
【考察内容】
①多边形的内角和,外角和等问题
②图形的镶嵌问题
③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。
(4)一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。
【考察内容】
①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一次函数与二元一次方程组,一元一次不等式的关系。
(5)数据的分析
二次函数、一元二次方程、旋转、圆和概率初步。
(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。
【考察内容】
①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。
③综合运用方程,几何图形,函数等知识点解决问题。
(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。
(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。
【考察内容】
①中心对称和中心对称图形的性质
②旋转和平移的性质。
(4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的`题型,分值一般是6-12分,难易度为中。
【考察内容】
①圆的有关性质的应用。垂径定理是重点。
②直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算
④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
(5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
【考察内容】
①简答事件的概率求解,图表法和数形图法
②利用概率解决实际,公平性问题等
③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
初三下册
反比例函数、相似、锐角三角函数和投影与视图。
(1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。
【考察内容】
①会画反比例函数的图像,掌握基本性质。
②能根据条件确定反比例函数的表达式。
③能用反比例函数解决实际问题。
(2)相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
【考察内容】
①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
(3)锐角三角函数
(4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。
【考察内容】
①常见几何体的三视图
②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。
③利用相似结合平行投影和中心投影解决实际问题。
(不同地区分值不同,可供参考)
选择题:3分一个,共14个,总分42分。
填空题:3分一个,共5个,总分15分。
解答题:共7题,总分63分。
(一)线段、角的计算与证明问题
中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。
(二)列方程(组)解决应用问题
在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。
(三)阅读理解问题
阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。
(四)多种函数交叉综合问题
初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。
(五)动态几何
从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。
(六)图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。
【中考数学的复习资料】相关文章:
中考数学复习资料06-18
2018中考数学复习资料10-20
中考复习资料06-18
2017中考数学复习资料实数篇09-19
中考数学第九章复习资料07-30
物理中考复习资料08-06
英语中考复习资料11-01
中考物理复习资料09-06
中考语文复习资料07-21
中考历史复习资料07-25