初一数学知识点

时间:2024-11-05 17:07:51 初一 我要投稿

[集合]初一数学知识点15篇

  在日常的学习中,相信大家一定都接触过知识点吧!知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家掌握重要知识点,下面是小编帮大家整理的初一数学知识点,仅供参考,欢迎大家阅读。

[集合]初一数学知识点15篇

初一数学知识点1

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行;

  (2)平行四边形的对角相等,邻角互补;

  (3)平行四边形的对角线互相平分。

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形:

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  (4)两组对角分别相等的'四边形是平行四边形:

  (5)对角线互相平分的四边形是平行四边形。

  4、对称性:平行四边形是中心对称图形。

初一数学知识点2

  第一章有理数

  1.1正数和负数

  以前学过的0以外的数前面加上负号“—”的书叫做负数。

  以前学过的0以外的数叫做正数。

  数0既不是正数也不是负数,0是正数与负数的分界。

  在同一个问题中,分别用正数和负数表示的量具有相反的意义

  1.2有理数

  1.2.1有理数

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数。

  1.2.2数轴

  规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的作用:所有的有理数都可以用数轴上的点来表达。

  注意事项:

  ⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数—a的点在原点的左边,与原点的距离是a个单位长度。

  1.2.3相反数

  只有符号不同的两个数叫做互为相反数。

  数轴上表示相反数的两个点关于原点对称。

  在任意一个数前面添上“—”号,新的数就表示原数的相反数。

  1.2.4绝对值

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  比较有理数的大小:

  ⑴正数大于0,0大于负数,正数大于负数。

  ⑵两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  有理数的加法法则:

  ⑴同号两数相加,取相同的符号,并把绝对值相加。

  ⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  ⑶一个数同0相加,仍得这个数。

  两个数相加,交换加数的位置,和不变。

  加法交换律:a+b.b+a

  三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

  加法结合律:(a+b)+c.a+(b+c)

  1.3.2有理数的减法

  有理数的减法可以转化为加法来进行。

  有理数减法法则:

  减去一个数,等于加这个数的相反数。

  a—b.a+(—b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  两个数相乘,交换因数的位置,积相等。

  ab.ba

  三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c.a(bc)

  一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 a(b+c).ab+ac

  数字与字母相乘的书写规范:

  ⑴数字与字母相乘,乘号要省略,或用“”

  ⑵数字与字母相乘,当系数是1或—1时,1要省略不写。

  ⑶带分数与字母相乘,带分数应当化成假分数。

  用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

  一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

  ax+bx.(a+b)x

  上式中x是字母因数,a与b分别是ax与bx这两项的系数。

  去括号法则:

  括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“—”,把括号和括号前的“—”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

  1.4.2有理数的除法

  有理数除法法则:

  除以一个不等于0的数,等于乘这个数的倒数。

  a÷b.a〃1

  b(b≠0)

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于

  0的数,都得0。

  因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  1.5有理数的乘方

  1.5.1乘方

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的`n次方的结果时,也可以读作a的n次幂。

  负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数,0的任何正整数次幂都是0。

  有理数混合运算的运算顺序:

  ⑴先乘方,再乘除,最后加减;

  ⑵同极运算,从左到右进行;

  ⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

  1.5.2科学记数法

  把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  用科学记数法表示一个n位整数,其中10的指数是n—1。

  1.5.3近似数和有效数字

  接近实际数目,但与实际数目还有差别的数叫做近似数。

  精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

  对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

  第二章整式加减

一、代数式与有理式

  1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 2、整式和分式统称为有理式。

  3、含有加、减、乘、除、乘方运算的代数式叫做有理式。

  二、整式和分式

  1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  2、有除法运算并且除式中含有字母的有理式叫做分式。

  三、单项式与多项式

  1、没有加减运算的整式叫做单项式。(数字与字母的积———包括单独的一个数或字母)

  2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

  单项式

  1、都是数字与字母的乘积的代数式叫做单项式。

  2、单项式的数字因数叫做单项式的系数。

  3、单项式中所有字母的指数和叫做单项式的次数。

  4、单独一个数或一个字母也是单项式。

  5、只含有字母因式的单项式的系数是1或―1。

  6、单独的一个数字是单项式,它的系数是它本身。

  7、单独的一个非零常数的次数是0。

  8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

  9、单项式的系数包括它前面的符号。

  10、单项式的系数是带分数时,应化成假分数。

  11、单项式的系数是1或―1时,通常省略数字“1”。

  12、单项式的次数仅与字母有关,与单项式的系数无关。

  多项式

  1、几个单项式的和叫做多项式。

  2、多项式中的每一个单项式叫做多项式的项。

  3、多项式中不含字母的项叫做常数项。

  4、一个多项式有几项,就叫做几项式。

  5、多项式的每一项都包括项前面的符号。

  6、多项式没有系数的概念,但有次数的概念。

  7、多项式中次数的项的次数,叫做这个多项式的次数。

  整式

  1、单项式和多项式统称为整式。

  2、单项式或多项式都是整式。

  3、整式不一定是单项式。

  4、整式不一定是多项式。

  5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

  四、整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。合并同类项:

  1).合并同类项的概念:

  把多项式中的同类项合并成一项叫做合并同类项。

  2).合并同类项的法则:

  同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  3).合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

  4).在掌握合并同类项时注意:

  a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

  b.不要漏掉不能合并的项。

  c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。说明:合并同类项的关键是正确判断同类项。

  3、几个整式相加减的一般步骤:

  1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  2)按去括号法则去括号。 3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  第三章一元一次方程

  2.1从算式到方程2.1.1一元一次方程

  含有未知数的等式叫做方程。只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。

  分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。

  解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

  2.1.2等式的性质

  等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  2.2从古老的代数书说起——一元一次方程的讨论⑴

  把等式一边的某项变号后移到另一边,叫做移项。

  2.3从“买布问题”说起——一元一次方程的讨论⑵

  方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x.a的形式转化,这个过程主要依据等式的性质和运算律等。

  去分母:

  ⑴具体做法:方程两边都乘各分母的最小公倍数⑵依据:等式性质2

  ⑶注意事项:

  ①分子打上括号

  ②不含分母的项也要乘

  2.4再探实际问题与一元一次方程

  2.5列方程解应用题的常用公式:

  (1)行程问题:距离.速度时间速度

  (2)工程问题:工作量.工效工时工效

  距离时间

  时间

  距离速度

  工作量工时

  工时

  工作量工效

  (3)比率问题:部分.全体比率比率

  部分全体

  全体

  部分比率

  (4)顺逆流问题:顺流速度.静水速度+水流速度,逆流速度.静水速度—水流速度;

  (5)商品价格问题:售价.定价折1,利润.售价—成本,10利润率

  成本售价

  成本

  100%

  (6)周长、面积、体积问题:C圆.2πR,S圆.πR2,C长方形.2(a+b),S长方形.ab,C正方形.4a,S正方形.a2,S环形.π(R2—r2),V长方体.abc,V正方体.a3,V圆柱.πR2h,V圆锥.1πR2h.

  第四章图形认识初步

  3.1多姿多彩的图形

  现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

  3.1.1立体图形与平面图形

  长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

  长方形、正方形、三角形、圆等都是平面图形。

  许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

  3.1.2点、线、面、体

  几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

  包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线。线和线相交的地方是点。

  几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  3.2直线、射线、线段

  经过两点有一条直线,并且只有一条直线。两点确定一条直线。

  点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

  直线桑一点和它一旁的部分叫做射线。

  两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

  3.3角的度量

  角也是一种基本的几何图形。

  度、分、秒是常用的角的度量单位。

  把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。

  3.4角的比较与运算

  3.4.1角的比较

  从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

  3.4.2余角和补角

  如果两个角的和等于90(直角),就说这两个角互为余角。如果两个角的和等于180(平角),就说这两个角互为补角。等角的补角相等。等角的余角相等。本章知识结构图

  从不同方向看立体图形立体图形展开立体图形几何图形平面图形角的度量角角的大小比较余角和补角角的平分线等角的补角相等等角的余角相等平面图形直线、射线、线段

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程ax2+ bx+ c.0(a、 b、 c属于R,a≠0)根的判别,. b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

  学好数学要重视“四个依据”是什么

  读好一本教科书——它是教学、考试的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好一本习题集——它是知识的拓宽;

  记好一本心得笔记——它是你自己的知识。

初一数学知识点3

  第一章中华文明的起源(1—12)

  1、我国境内已知的最早人类是元谋人,距今170万年P2

  2、人与动物的根本区别是会不会制造工具P2

  3、北京人和山顶洞人生活的时间和地点P1.3.4

  4、从猿到人的演变过程中,劳动起了决定作用。P2

  5、北京人使用天然火,山顶洞人懂得人工取火并已经掌握了磨光和钻孔技术。P4—5

  6、北京人过群居生活,山顶洞人过氏族生活P5

  7、河姆渡人生活在长江流域、半坡人生活在黄河流域,都已经使用磨制石器P7—8

  8、河姆渡人栽培水稻,半坡人种粟,我国是世界上最早种植水稻和粟的国家。P7—8

  9、大汶口文化晚期中出现了私有财产和贫富分化。P7—P8

  10、炎帝、黄帝部落结成联盟,形成了日后的华夏族,炎帝、黄帝被尊奉为华夏族的祖先。P12

  11、被称为中华民族“人文初祖”的是黄帝。P13

  12、尧舜禹的“禅让”:民主推选部落联盟首领的方法。P14

  第二章夏商西周春秋战国(13—40)

  1、公元前20xx年,禹建立夏朝,这是我国历第一个奴隶制王朝。P15

  2、汤灭夏,建立商朝,盘庚迁殷后,商朝统治稳定。P21

  3、公元前1046年,周武王经牧野之战灭商,建立周朝,定都镐。P23

  4、西周实行分封制,加强了对各地的统治。P23—24

  5、公元前771年,西周灭亡。P24

  6、商朝的司母戊鼎是世界上已发现的的`青铜器,湖南宁乡出土了造型奇特的四羊方尊P26

  7、“三星堆”文化遗址出土的青铜面具、大型青铜立人像、青铜神树等引起了中外人士的瞩目。P27

  8、农业、畜牧业、手工业和商业的繁荣,形成了我国夏、商西周灿烂的青铜文明。P27

  9、公元前770年,周平王东迁洛,史称“东周”。东周分为春秋和战国两个时期。P30

  10、春秋五霸:齐桓公、晋文公、楚庄王、吴王夫差、越王勾践。P30—32

  11、齐桓公提出“尊王攘夷”的口号。P31

  12、决定晋文公成为中原霸主的战役是城濮之战。P32

初一数学知识点4

  1、三角形的分类

  三角形按边的关系分类如下:

  三角形包括不等边三角形和等腰三角形

  等腰三角形 包括底和腰不相等的等腰三角形和等边三角形

  三角形按角的关系分类如下:

  三角形包括 直角三角形(有一个角为直角的三角形)和斜三角形

  斜三角形 包括 锐角三角形(三个角都是锐角的三角形)和 钝角三角形(有一个角为钝 角的三角形)

  把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  2、三角形的三边关系定理及推论

  (1)三角形三边关系定理:三角形的两边之和大于第三边。

  推论:三角形的两边之差小于第三边。

  3、三角形的内角和定理及推论

  三角形的内角和定理:三角形三个内角和等于180°。

  推论:

  ①直角三角形的两个锐角互余。

  ②三角形的一个外角等于和它不相邻的来两个内角的和。

  ③三角形的一个外角大于任何一个和它不相邻的内角。

  注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  4、三角形的面积

  三角形的面积=×底×高

  全等三角形

  1、全等三角形的概念

  能够完全重合的两个三角形叫做全等三角形。。

  2、三角形全等的判定

  三角形全等的判定定理:

  (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

  (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

  (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

  直角三角形全等的判定:

  对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

  3、全等变换

  只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

  全等变换包括一下三种:

  (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

  (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

  (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

  等腰三角形

  1、等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的.中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  2、三角形中的中位线

  连接三角形两边中点的线段叫做三角形的中位线。

  (1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

  (2)要会区别三角形中线与中位线。

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

  三角形中位线定理的作用:

  位置关系:可以证明两条直线平行。

  数量关系:可以证明线段的倍分关系。

  常用结论:任一个三角形都有三条中位线,由此有:

  结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

  结论2:三条中位线将原三角形分割成四个全等的三角形。

  结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

  结论4:三角形一条中线和与它相交的中位线互相平分。

  结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

初一数学知识点5

  1、有序数对

  有顺序的两个数a与b组成的数对,叫做有序数对。

  2、平面直角坐标系

  平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

  平面上的任意一点都可以用一个有序数对来表示。

  建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  3、坐标方法的'简单应用

  用坐标表示地理位置

  利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:

  ⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

  ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  4、用坐标表示平移

  在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x—a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y—b))。

  在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

初一数学知识点6

  1.有理数的大小比较

  比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的`两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

  2.有理数大小比较的法则:

  ①正数都大于0;

  ②负数都小于0;

  ③正数大于一切负数;

  ④两个负数,绝对值大的其值反而小。

  规律方法·有理数大小比较的三种方法:

  (1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  (2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

  (3)作差比较:

  若a﹣b>0,则a>b;

  若a﹣b<0,则a

  若a﹣b=0,则a=b.

初一数学知识点7

  知识点、概念总结

  1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

  2.不等式分类:不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

  3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

  4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

  (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)F(x)同解。

  (2)如果不等式F(x)

  (3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

  7.不等式的性质:

  (1)如果x>y,那么yy;(对称性)

  (2)如果x>y,y>z;那么x>z;(传递性)

  (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

  8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般顺序:

  (1)去分母(运用不等式性质2、3)

  (2)去括号

  (3)移项(运用不等式性质1)

  (4)合并同类项

  (5)将未知数的系数化为1(运用不等式性质2、3)

  (6)有些时候需要在数轴上表示不等式的解集

  10.一元一次不等式与一次函数的综合运用:

  一般先求出函数表达式,再化简不等式求解。

  11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

  了一个一元一次不等式组。

  12.解一元一次不等式组的`步骤:

  (1)求出每个不等式的解集;

  (2)求出每个不等式的解集的公共部分;(一般利用数轴)

  (3)用代数符号语言来表示公共部分。(也可以说成是下结论)

  13.解不等式的诀窍

  (1)大于大于取大的(大大大);

  例如:X>-1,X>2,不等式组的解集是X>2

  (2)小于小于取小的(小小小);

  例如:X<-4,X<-6,不等式组的解集是X<-6

  (3)大于小于交叉取中间;

  (4)无公共部分分开无解了;

  14.解不等式组的口诀

  (1)同大取大

  例如,x>2,x>3,不等式组的解集是X>3

  (2)同小取小

  例如,x<2,x<3,不等式组的解集是X<2

  (3)大小小大中间找

  例如,x<2,x>1,不等式组的解集是1

  (4)大大小小不用找

  例如,x<2,x>3,不等式组无解

  15.应用不等式组解决实际问题的步骤

  (1)审清题意

  (2)设未知数,根据所设未知数列出不等式组

  (3)解不等式组

  (4)由不等式组的解确立实际问题的解

  (5)作答

  16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

初一数学知识点8

  (4)据规律

  底数的小数点移动一位,平方数的小数点移动二位。

  2、

  3、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  4、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  5、混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。

  6、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。

  六、初一数学上册知识点:整式的加减。

  1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

  2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  3、多项式:几个单项式的和叫多项式。

  4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)

  是常见的两个二次三项式。

  5、整式:单项式和多项式统称为整式。

  七、初一数学上册知识点:整式分类为

  1、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  2、合并同类项法则:系数相加,字母与字母的指数不变。

  3、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  4、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

  5、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  八、初一数学上册知识点:一元一次方程

  1、等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”!

  2、等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

  等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

  3、方程:含未知数的等式,叫方程。

  4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

  5、移项:改变符号后,把方程的项从一边移到另一边叫移项。移项的依据是等式性质1.

  6、一元一次方程:只含有一个未知数,并且未知数的`次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  8、一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。

  9、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。

  九、初一数学上册知识点:列一元一次方程解应用题。

  (1)读题分析法:…………多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

  (2)画图分析法:…………多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  十、初一数学上册知识点:。列方程解应用题的常用公式。

初一数学知识点9

  ①大于0的数叫正数。

  ②在正数前面加上“-”号的数,叫做负数。

  ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

  ④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

  ⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。

  ⑥非负数就是正数和零;非负整数就是正整数和0。

  ⑦“基准”题:有固定的基准数,和的.求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

初一数学知识点10

  1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

  5、几何体简称为体(solid).

  6、包围着体的是面(surface),面有平的面和曲的面两种.

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

  8、点动成面,面动成线,线动成体.

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

  13、连接两点间的线段的长度,叫做这两点的距离(distance).

  14、角∠(angle)也是一种基本的几何图形.

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

  16、从一个角的顶点出发,把这个角分成相等的两个角的'射线,叫做这个角的平分线(angular bisector).

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等.

初一数学知识点11

  初一数学重要知识点总结

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  初一数学重要知识点归纳

  整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  3.多项式:几个单项式的`和叫多项式.

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

  初一数学重要知识点整理

  ⒈绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2.绝对值的代数定义

  ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

  可用字母表示为:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

  如数轴所示,化简下列各数

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.绝对值的性质

  任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  ⑶任何数的绝对值都不小于原数。即:|a|≥a;

  ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  经典考题

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  4.有理数大小的比较

  ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

  ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数

初一数学知识点12

  1.有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

  (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的`相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:

  绝对值的问题经常分类讨论;

  (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

初一数学知识点13

  一、目标与要求

  1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的.关系。

  2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。

  3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。

  二、重点

  学会画频数分布直方图;

  分层抽样的方法和样本的分析、归纳;

  抽样调查、样本、总体等概念以及用样本估计总体的思想;

  全面调查的过程(数据的收集、整理、描述)。

  三、难点

  绘制扇形统计图;

  样本的抽取;

  分层抽样方案的制定;

  确定组距和组数。

初一数学知识点14

  《正数和负数》

  1、正数:像小学学过的大于0的数叫做正数。

  2、负数:在正数前面加上负号“-”的数叫做负数。

  3、正数负数的判断方法:

  ⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

  ⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。

  4、 0的含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。

  5、 具有相反意义的量;

  6、 正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。

  《有理数》

  1、正数和负数的有关概念

  (1)正数:比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧

  4、绝对值与相反数

  (1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:

  一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  任何数的绝对值是非负数。

  最小的正整数是1,最大的`负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的绝对值,绝对值大的反而小。

  6、有理数加法

  (1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

  (2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.

  (3)一个数同零相加,仍得这个数.

  加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)

  7、有理数减法:减去一个数,等于加上这个数的相反数

  8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

  例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”

  9、有理数的乘法

  两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

  第一步:确定积的符号 第二步:绝对值相乘

  10、乘积的符号的确定

  几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

  当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

  11、倒数:乘积为1的两个数互为倒数,0没有倒数。

  正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

  倒数是本身的只有1和-1。

  整式的加减

  一、整式——单项式

  1、单项式的定义:

  由数或字母的积组成的式子叫做单项式。

  说明:单独的一个数或者单独的一个字母也是单项式.

  2、单项式的系数:

  单项式中的数字因数叫这个单项式的系数.

  ab2

  说明:⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32

  系数是1;4.8a的系数是4.8; 3

  ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如4xy2的系数是4;2x2y的系数是2;

  ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如ab的系数是-1;ab的系数是1;

  ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2.

  3、单项式的次数:

  一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1

  的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,而不是7次,应注意字母z的指数是1而不是0;

  ⑵单项式的指数只和字母的指数有关,与系数的指数无关。如单项式4222

  24x2y3z4的次数是2+3+4=9而不是13次;

  ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式

  是单独的一个常数时,一般不讨论它的次数;

  4、在含有字母的式子中如果出现乘号,通常将乘号写作“ ”或者省略不写。 例如:100t可以写成100t或100t

  5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.

  《有理数的乘除法》

  ①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数(积为1)如:(-2)×(-1/2)=1。

  乘法交换律:a×b=b×a;结合律:a×(b×c)=(a×b)×c;

  分配律:a×(b+c)= a×b+ a×c(注意可逆的使用)。

  ②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何一个不等于0的数,都得0。

  《有理数的乘方》

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;

  (4)据规律底数的小数点移动一位,平方数的小数点移动二位。

初一数学知识点15

  正数和负数

  ⒈正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2.具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

  零上8℃表示为:+8℃;零下8℃表示为:-8℃

  3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

  ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:

  (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

  有理数

  1.有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

  ⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。3,整数也能化成分数,也是有理数

  注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。

  2.有理数的分类

  ⑴按有理数的意义分类⑵按正、负来分正整数

  整数0正有理数正分数

  有理数有理数0(0不能忽视)

  负整数

  分数负有理数负分数

  总结:①正整数、0统称为非负整数(也叫自然数)

  ②负整数、0统称为非正整数

  ③正有理数、0统称为非负有理数

  ④负有理数、0统称为非正有理数

  数轴

  ⒈数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

  可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

  2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4.数轴上特殊的(小)数

  ⑴最小的自然数是0,无的自然数;

  ⑵最小的正整数是1,无的正整数;

  ⑶的负整数是-1,无最小的负整数

  5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,,则a=0

  相反数

  ⒈相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2.相反数的性质与判定

  ⑴任何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3.相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4.相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

  ⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

  ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化

  简得5)

  5.相反数的表示方法

  ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,-a<0(正数的相反数是负数)

  当a<0时,-a>0(负数的相反数是正数)

  当a=0时,-a=0,(0的相反数是0)

  绝对值

  ⒈绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2.绝对值的代数定义

  ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

  可用字母表示为:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

  如数轴所示,化简下列各数

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.绝对值的性质

  任何一个有理数的'绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  ⑶任何数的绝对值都不小于原数。即:|a|≥a;

  ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  经典考题

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  4.有理数大小的比较

  ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

  ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数

  大于负数。

  5.绝对值的化简

  ①当a≥0时,|a|=a;②当a≤0时,|a|=-a

  6.已知一个数的绝对值,求这个数

  一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。如:|a|=5,则a=土5

  有理数的加减法

  1.有理数的加法法则

  ⑴同号两数相加,取相同的符号,并把绝对值相加;

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;

  ⑷一个数与零相加,仍得这个数。

  2.有理数加法的运算律

  ⑴加法交换律:a+b=b+a

  ⑵加法结合律:(a+b)+c=a+(b+c)

  在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

  ①互为相反数的两个数先相加——“相反数结合法”;

  ②符号相同的两个数先相加——“同号结合法”;

  ③分母相同的数先相加——“同分母结合法”;

  ④几个数相加得到整数,先相加——“凑整法”;

  ⑤整数与整数、小数与小数相加——“同形结合法”。

  3.加法性质

  一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:

  ⑴当b>0时,a+b>a⑵当b<0时,a+b

  4.有理数减法法则

  减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。

  5.有理数加减法统一成加法的意义

  在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

  在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

  和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”

  ②按运算意义读作“负8减7减6加5”

  6.有理数加减混合运算中运用结合律时的一些技巧:

  Ⅰ.把符号相同的加数相结合(同号结合法)

  (-33)-(-18)+(-15)-(+1)+(+23)

  原式=-33+(+18)+(-15)+(-1)+(+23)(将减法转换成加法)

  =-33+18-15-1+23(省略加号和括号)

  =(-33-15-1)+(18+23)(把符号相同的加数相结合)

  =-49+41(运用加法法则一进行运算)

  =-8(运用加法法则二进行运算)

  Ⅱ.把和为整数的加数相结合(凑整法)

  (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)

  原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法)

  =6.6-5.2+3.8-2.6-4.8(省略加号和括号)

  =(6.6-2.6)+(-5.2-4.8)+3.8(把和为整数的加数相结合)

  =4-10+3.8(运用加法法则进行运算)

  =7.8-10(把符号相同的加数相结合,并进行运算)=-2.2(得出结论)

  Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)313217-+-+-524528

  321137原式=(--)+(-+)+(+-)552248

  1=-1+0-8

  1=-18-

  Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)312)+(-3)-(-10)-(+1.25)483

  13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834

  13121=+3-3+10-184834

  31112=(3-1)+(-3)+1044883

  12=2-3+1023

  1=-3+136

  1=106(+0.125)-(-3

  Ⅴ.把带分数拆分后再结合(先拆分后结合)-31617+10-12+45112215

【初一数学知识点】相关文章:

数学初一知识点总结07-04

初一数学必考的知识点11-16

【经典】初一数学知识点11-03

初一数学知识点04-18

初一数学重要知识点10-08

初一数学知识点11-01

初一数学上册知识点11-20

初一数学知识点归纳12-27

初一数学下知识点总结12-07

初一数学棱柱的性质知识点09-12