[精]初一下册数学知识点
在平日的学习中,不管我们学什么,都需要掌握一些知识点,知识点是指某个模块知识的重点、核心内容、关键部分。你知道哪些知识点是真正对我们有帮助的吗?以下是小编精心整理的初一下册数学知识点,仅供参考,希望能够帮助到大家。
![[精]初一下册数学知识点](https://p.9136.com/00/l/d6aacab605_5fbf7eadc17d3.jpg)
初一下册数学知识点1
1.有理数:
(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的.相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
初一下册数学知识点2
一、目标与要求
1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。
2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。
3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。
二、重点
学会画频数分布直方图;
分层抽样的方法和样本的.分析、归纳;
抽样调查、样本、总体等概念以及用样本估计总体的思想;
全面调查的过程(数据的收集、整理、描述)。
三、难点
绘制扇形统计图;
样本的抽取;
分层抽样方案的制定;
确定组距和组数。
初一下册数学知识点3
一、目标与要求
1.解有序数对的应用意义,了解平面上确定点的常用方法。
2.培养学生用数学的意识,激发学生的`学习兴趣。
3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。
4.发展学生的形象思维能力,和数形结合的意识。
5.坐标表示平移体现了平面直角坐标系在数学中的应用。
二、重点
掌握坐标变化与图形平移的关系;
有序数对及平面内确定点的方法。
三、难点
利用坐标变化与图形平移的关系解决实际问题;
利用有序数对表示平面内的点。
初一下册数学知识点4
初一下册知识点总结
1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4.零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.单项式的系数与次数:单项式中不为零的.数字因数,叫单项式的数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
10.合并同类项法则:系数相加,字母与字母的指数不变。
11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
平面几何部分
1、补角重要性质:同角或等角的补角相等.
余角重要性质:同角或等角的余角相等.
2、①直线公理:过两点有且只有一条直线.
线段公理:两点之间线段最短.
②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.
3、三角形的内角和等于180
三角形的一个外角等于与它不相邻的两个内角的和
三角形的一个外角大于与它不相邻的任何一个内角
4、n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形
5、n边形的内角和公式:180(n-2); 多边形的外角和等于360
6、判断三条线段能否组成三角形:
①a+b>c(a b为最短的两条线段)②a-b
7、第三边取值范围:
a-b< c
8、对应周长取值范围:
若两边分别为a,b则周长的取值范围是 2a
如两边分别为5和7则周长的取值范围是 14
9、相关命题:
(1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
(2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。
(3)任意一个三角形两角平分线的夹角=90+第三角的一半。
(4) 钝角三角形有两条高在外部。
(5) 全等图形的大小(面积、周长)、形状都相同。
(6) 面积相等的两个三角形不一定是全等图形。
(7) 三角形具有稳定性。
(8) 角平分线到角的两边距离相等。
(9)有一个角是60的等腰三角形是等边三角形。
初一下册数学知识点5
一、选择题(每小题4分,共12分)
1.计算(-x)2x3的结果是()
A.x5 B.-x5 C.x6 D.-x6
2.下列各式计算正确的个数是()
①x4②x3x3=2x6 ;③a5+a7 =a12;
④(-a)2(-a2)=-a4;⑤a4a3=a7.
A.1B.2C.3D.4
3.下列各式能用同底数幂乘法法则进行计算的是()
A.(x+y)2(x-y)2B.(x+y)2(-x-y)
C.(x+y)2+2 (x+y)2D.(x-y)2(-x-y)
二、填空题(每小题4分,共12分)
4.(20xx天津中考)计算aa6的`结果等于.
5.若2n-224=64,则n= .
6.已知2x2x8=213,则x=.
三、解答题(共26分)
7.(8分)计算:(1)(- 3) 3(-3)4(-3).
(2)a3a2-a(-a)2a2.
(3)(2m-n)4(n-2m)3(2m-n)6.
(4)yyn+ 1-2yny2.
8.(8分)已知ax=5,ay=4,求下列各式的值:
(1)ax+2. (2)ax+y+1.
【拓展延伸】
9.(10分)已知2a=3,2b=6, 2c=12,试确定a,b,c之间的关系.
答案解析
1.【解析】选A.(-x)2x3=x2x3=x2+3=x5.
2.【解析】选B.x4x2=x4+2=x6,故①错误;x3x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2(- a2)=a2(-a2)=-a2a2=-a2+2=-a4,故④正确;a4a3=a4+3=a7,故⑤正确.
3.【解 析】选B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.
4.【解析】根据同底数幂的乘法法 则同底数幂相乘,底数不变,指数相加,所以aa 6=a1+6=a7.
答案:a7
5.【解析】因为 2n-224=2n-2+4=2n+2,64=26,
所以2n+2=26,即n+2=6,解得n=4.
答案:4
6.【解析】因为2x2x8=2x2x23=2x+x+3 ,
所以x+x+3=13,解得x=5.
答案:5
7.【解析】(1)(-3)3(-3)4(-3)=(-3)3+4+1=(-3)8=38.
(2)a3a2-a(-a)2a2=a3+2-aa2a2
=a5-a5=0.
(3)(2m-n)4(n-2m)3(2m-n)6
=(n-2m)4(n-2m)3(n-2m)6
=(n-2m)4+3+6=(n-2m)13.
(4)yyn+1-2yny2=yn+1+1-2yn+2
=yn+2-2yn+2=(1-2)yn+2
=-yn+2.
8.【解析】(1)ax+2=axa2=5a2.
(2)ax+y+1=axaya=54a=20a.
9.【解析】方法一:因为12 =322=62,
所以2c=12=322=2a22=2a+2,
即c=a+2,①
又因为2c=12=62=2b2=2b+1,
所以c=b+1,②
①+②得2c=a+b+3.
方法二:因为2b=6=32=2a2=2a+1,
所以b=a+1,①
又因为2c=12=62=2b2=2b+1,
所以c=b+1,②
①-②得2b=a+c.
初一下册数学知识点6
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。
规定:0的平方根是0。
负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。例如:-1的平方根为1i,-9的平方根为3i。
平方根包含了算术平方根,算术平方根是平方根中的一种。
任何复数都有平方根。
算术平方根为:a=a(a为非负数)
被开方数是乘方运算里的.幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即a=x(a为非负数)
初一下册数学知识点7
用数轴表示数,右边的'数总比左边的数大:正数>0>负数
(1)作差比较法:
若a-b>0,则a>b
若a-b=0,则a=b
若a-b<0,则a
(2)作商比较法:
设b>0,有若a/b>1,则a>b;若a/b=1,则a=b;若a/b<1,则a
当b<0,a<0时:若a>1,则ab。
(4)倒数比较法
若a>b>0,则1/a<1/b
若a1/b
若a<0
(5)绝对值比较法:
若a<0、b<0,则丨a丨>丨b丨,ab。
(6)两数平方法:如实数与数轴上的点一一对应。平面直角坐标系中的点与有序实数对之间一一对应。
初一下册数学知识点8
一、目标与要求
1。感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2。经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3。通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
三、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
四、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
五、知识点、概念总结
1。不等式:用符号,,,表示大小关系的式子叫做不等式。
2。不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。
3。不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4。不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5。不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x—12的'解集是x3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6。解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)与不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。
7。不等式的性质:
(1)如果xy,那么yy;(对称性)
(2)如果xy,y那么x(传递性)
(3)如果xy,而z为任意实数或整式,那么x+z(加法则)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
(5)如果xy,z0,那么xzy如果xy,z0,那么xz
(6)如果xy,mn,那么x+my+n(充分不必要条件)
(7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次幂y的n次幂(n为正数)
8。一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9。解一元一次不等式的一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10。 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11。一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一一起,就组成
了一个一元一次不等式组。
12。解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
13。解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X—1,X2 ,不等式组的解集是X2
(2)小于小于取小的(小小小);
例如:X—4,X—6,不等式组的解集是X—6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14。解不等式组的口诀
(1)同大取大
例如,x2,x3 ,不等式组的解集是X3
(2)同小取小
例如,x2,x3 ,不等式组的解集是X2
(3)大小小大中间找
例如,x2,x1,不等式组的解集是1
(4)大大小小不用找
例如,x2,x3,不等式组无解
15。应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16。用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
初一下册数学知识点9
一、将考试的一些错误信息进行分类
①遗憾之错
就是分明会做,反而做错了的题。
比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如单位混用等。
②似非之错
理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了;或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。
③无为之错
由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。
一般情况下,这三类错误的比例是2:7:1,你也可以自己分析一下自己的三类错误比例。得出结论后,就知道问题出在哪里,要针对性进行解决。
二、出现这些错误情况的原因
①被动学习
许多同学有很强的依赖或懒惰的心理,只是被动的跟随老师的惯性运转,没有掌握学习的主动权。表现在不定计划、坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所有内容。
②学不得法
老师上课一般都要讲清知识点的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
③不重视基础
一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
④数学思维不够宽广
有的同学不会对知识的深度、广度,以及各章节进行总结,并融会贯通,不会“多角度”考虑,不会“概括”、“类比”、“联想”、“抽象”等各种方法与思维。
⑤死记硬背,不能迁移知识
初中数学主要是以形象、通俗的语言方式进行表达。有些同学建立了统一的思维模式,就只能机械的进行操作,形成一种定势方式。而不会加强知识的迁移,对一道题,要尽可能多想解法,多开动“脑筋”,使思维“活”起来。对一些相近的`题,要善于总结,形成“一法多题”。
三、科学的学习方法
学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。
①培养良好的学习习惯
良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划明确学习目的。合理的学习计划是推动主动学习和克服困难的内在动力。既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前预习是取得较好学习效果的基础。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。上课专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
及时复习是提高效率学习的重要一环。通过反复阅读教材,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较。
独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所有新知识的理解和对新技能的掌握过程。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。做错的作业要再做一遍,对错误的地方没弄清楚要反复思考。
系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,提示知识间的内在联系,以达到所有知识融会贯通的目的。
课外学习包括阅读课外书籍与报刊,课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力。
②秩序渐进,防止急躁
由于学生年龄较小,阅历有限,有些学生容易急躁,有的同学贪多求快,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成。学习是一项循序渐进、长期积累的过程,要有恒心、决心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。
③研究学科特点,寻找最佳学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛性,对能力要求较高。具体寻找方法因人而异,但学习的五个环节:预习、上课、复习、作业、总结是少不了的。
④多交流、多反思解疑,化解分化点
多和同学交流,多向老师请教,多开展变式练习,化解分化点,以达到灵活掌握知识、运用知识的目的。
只要学习科学方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聪明”,多交流,多反思,养成良好的学习习惯,就能顺利度过学习适应期,就能在今后的数学成绩突飞猛进。
四、学数学的几个建议:
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,以及老师补充的课外知识。
2、建立数学纠错本。
3、记忆数学规律和数学小结论。
4、与同学建立良好关系,争做“小老师”,形成数学学习“互助组”。
5、增加数学课外阅读,加大自学力度。
6、反复巩固,消灭前学后忘。
7、学会总结归类。
初一下册数学知识点10
一、目标与要求
1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、知识框架
三、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
四、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
五、知识点、概念总结
1、不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2、不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5、不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x—1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6、解不等式可遵循的一些同解原理
(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)
(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。
7、不等式的性质:
(1)如果x>y,那么yy;(对称性)
(2)如果x>y,y>z;那么x>z;(传递性)
(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)
8、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9、解一元一次不等式的'一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10、 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一一起,就组成
了一个一元一次不等式组。
12、解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
13、解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X>—1,X>2 ,不等式组的解集是X>2
(2)小于小于取小的(小小小);
例如:X<—4,X<—6,不等式组的解集是X<—6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14、解不等式组的口诀
(1)同大取大
例如,x>2,x>3 ,不等式组的解集是X>3
(2)同小取小
例如,x<2,x<3 ,不等式组的解集是X<2
(3)大小小大中间找
例如,x<2,x>1,不等式组的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式组无解
15、应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16、用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
初一下册数学知识点11
二元一次方程组
1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。
3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
(2)找:找出能够表示题意两个相等关系;
(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;
(4)解:解这个方程组,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.
一元一次不等式
重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.
要点诠释:
(1)不等号的类型:
①“≠”读作“不等于”,它说明两个量之间的.关系是不等的,但不能明确两个量谁大谁小;
(2)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:
由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:
一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:
不等式的解集必须符合两个条件:
(1)解集中的每一个数值都能使不等式成立;
(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质
基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)
初一下册数学知识点12
1.同一平面内,两直线不平行就相交。
2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互
为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其
中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足
5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短;
7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在
两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。
10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题
11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:
1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。
12.★命题:“如果+题设,那么+结论。”
三角形和多边形
1.三角形内角和为180°
2.构成三角形满足的条件:三角形两边之和大于第三边。
判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边)
3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高
2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD
是斜边AB
上的高,则有ACBCCDAB
A
CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等)
【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角:
【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为
【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。
单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种
(两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与
0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。
【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少?
平面直角坐标系
▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点
▲建系原则:原点、正方向、横纵轴名称(即x、y)
√语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系
▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★
点的.平移规律(P51归纳)
例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳)
重点题目:P53练习;P543、4题;P557题。2.对称规律▲
关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数
关于原点对称,横、纵坐标同时取相反数
例:P点的坐标为(5,7),则P点
(1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★
假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵
组距轴为“频数”
6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x
轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题
二元一次方程组和不等式、不等式组
1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分)
3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342
步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题)
数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。
9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组
4
在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。
初一下册数学知识点13
1.判断一个方程是不是二元一次方程,一般要将方程化为一般形式后再根据定义判断。
2.二元一次方程的解:一个二元一次方程有无数个解,而每一个解都是一对数值。求二元一次方程的解的方法:若方程中的未知数为x,y,可任取x的一些值,相应的可算出y的值,这样,就会得到满足需要的数对。
3.二元一次方程组:两个二元一次方程合在一起,就组成了一个二元一次方程组。作为二元一次方程组的两个方程,不一定都含有两个未知数,可以其中一个是一元一次方程,另一个是二元一次方程。
4.二元一次方程组的`解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。检验一对数值是不是二元一次方程组的解的方法是,将两个未知数分别代入方程组中的两个方程,如果都能满足这两个方程,那么它就是方程组的解。
初一下册数学知识点14
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的.角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
初一下册数学知识点15
单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的'系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
【初一下册数学知识点】相关文章:
初一数学下册知识点总结11-29
初一下册数学必备知识点02-14
初一数学下册重点知识点总结02-17
初一下册数学知识点08-07
初一下册数学考试知识点06-27
【精选】初一下册数学知识点汇总07-30
初一下册数学知识点汇总07-19
初一下册数学知识点归纳12-17
初一语文下册知识点10-18