初二数学知识点总结归纳
总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能帮我们理顺知识结构,突出重点,突破难点,让我们来为自己写一份总结吧。我们该怎么写总结呢?以下是小编整理的初二数学知识点总结归纳,欢迎阅读与收藏。

初二数学知识点总结归纳1
一.知识框架
二.知识概念
1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
3.平行四边形的判定1.两组对边分别相等的四边形是平行四边形;2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。
5.直角三角形斜边上的中线等于斜边的一半。
6.矩形的定义:有一个角是直角的平行四边形。
7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD
8.矩形判定定理:1.有一个角是直角的平行四边形叫做矩形;2.对角线相等的平行四边形是矩形;3.有三个角是直角的'四边形是矩形。
9.菱形的定义:邻边相等的平行四边形。
10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
11.菱形的判定定理:1.一组邻边相等的平行四边形是菱形;2.对角线互相垂直的平行四边形是菱形;3.四条边相等的四边形是菱形。
12.S菱形=1/2×ab(a、b为两条对角线)
13.正方形定义:一个角是直角的菱形或邻边相等的矩形。
14.正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
15.正方形判定定理:1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。
16.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
17.直角梯形的定义:有一个角是直角的梯形
18.等腰梯形的定义:两腰相等的梯形。
19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
初二数学知识点总结归纳2
一.知识框架
二.知识概念
1.加权平均数:加权平均数的计算公式。权的理解:反映了某个数据在整个数据中的重要程度。
2.中位数:将一组数据按照由小到大(或由大到小)的`顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。
4.极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
初二数学知识点总结归纳3
一.知识框架
二知识概念
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
2.定理:经过证明被确认正确的命题叫做定理。
3.我们把题设、结论正好相反的'两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
初二数学知识点总结归纳4
第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的.加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
初二数学知识点总结归纳5
一、平方根
1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。(也叫做二次方根)
即:若x2=a,则x叫做a的平方根。
2、平方根的性质:
(1)一个正数有两个平方根。它们互为相反数;
(2)零的平方根是零;
(3)负数没有平方根。
二、算术平方根
1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。
2、算术平方根的性质:
(1)一个正数的算术平方根只有一个且为正;
(2)零的算术平方根是零;
(3)负数没有算术平方根;
(4)算术平方根的非负性:a≥0。
三、平方根和算术平方根是记号:平方根—±a(读作:正负根号a);算术平方根—a(读作根号a)
即:“±a”表示a的'平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。
其中a叫做被开方数。∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。
四、开平方:求一个非负数的平方根的运算,叫做开平方。其实质就是:已知指数和二次幂求底数的运算。
五、立方根
1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。(也叫做三次方根)
即:若x3=a,则x叫做a的立方根。
2、立方根的性质:
(1)一个正数的立方根为正;
(2)一个负数的立方根为负;(3)零的立方根是零。
3、立方根的记号:a(读作:三次根号a),a称为被开方数,“3”称为根指数。
a中的被开方数a的取值范围是:a为全体实数。
六、开立方:求一个数的立方根的运算,叫做开立方。其实质就是:已知指数和三次幂求底数的运算。
七、注意事项:
1、“±a”、“a”、“a”的实质意义:“±a”→问:哪个数的平方是a;“a”→问:哪个非负数的平方是a;“a”→问:哪个数的立方是a。
2、注意a和a中的a的取值范围的应用。
如:若x?3有意义,则x取值范围是。(∵x-3≥0,∴x≥3)(填:x≥3)
若?x20xx有意义,则x取值范围是。(填:全体实数) 3、?a??a。如:∵27??3,?27??3,∴?27??27
4、对于几个算数平方根比较大小,被开方数越大,其算数平方根的值也越大。 ?7?6?5?2等。23和32怎么比较大小?(你知道吗?不知道就问!)
5、算数平方根取值范围的确定方法:关键:找邻近的“完全平方数的算数平方根”作参照。如:确定7的取值范围。∵4<7<,∴2<<3。
6、几个常见的算数平方根的值:2?1.414,3?1.732,5?2.236,?2.449,?2.646。
八、补充的二次根式的部分内容1、二次根式的定义:形如a(a≥0)的式子,叫做二次根式。
2、二次根式的性质:(1)ab?a?b(a≥0,b≥0);
(2)≥0,b>0);
(3) (a)2?a(a≥0);
(4) a2?|a|
3、二次根式的乘除法:
(1)乘法:a??ab(a≥0,b≥0);
(2)除法:aa(a?ba(a≥0,b>0) b§
初二数学知识点总结归纳6
分式
一.知识框架
二.知识概念
1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于0
3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:
A/B=A_C/B_C A/B=A÷C/B÷C(A,B,C为整式,且C≠0)
5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.
6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:
a/c±b/c=a±b/c
2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd
3.分式的.乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b _ c/d=ac/bd
4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc
(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_d/c
7.分式方程的意义:分母中含有未知数的方程叫做分式方程.
8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
【初二数学知识点总结归纳】相关文章:
初二数学知识点归纳总结03-28
初二数学必考知识点归纳12-23
初二数学必修角的分类知识点归纳11-27
初二物理知识点的归纳12-04
初二英语知识点归纳02-18
初二语文知识点归纳08-05
初二英语知识点归纳09-07
初二物理知识点归纳01-07
(精选)初二英语知识点归纳02-13