- 抛物线的基本知识点 推荐度:
- 相关推荐
(优秀)抛物线的基本知识点
在平日的学习中,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。还在为没有系统的知识点而发愁吗?以下是小编整理的抛物线的基本知识点,欢迎阅读,希望大家能够喜欢。

重点:熟练掌握抛物线的定义及四种不同的标准方程形式,会根据抛物线的标准方程研究得出性质,会由几何性质确定抛物线的标准方程。 熟练运用坐标法,理解数形结合思想,掌握相关代数知识、平面几何知识的运用。
难点:把几何条件转化为代数语言,进而把“形”转化为“数”。 选择合理、简捷的运算途径,并实施正确的运算。 灵活利用概念、平面几何知识。
1. 抛物线及其性质的基本思路
求抛物线方程时,若由已知条件可知方程的形式,一般用待定系数法;若由已知条件可知动点的运动规律,一般用轨迹法;凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意运用韦达定理;解决焦点弦问题,抛物线的定义有广泛的应用,还应注意焦点弦的几何性质,针对y2=2px(p>0),设焦点弦为x=my+■,既方便消元,又可避免斜率不存在的情况;可能的情况下,注意平面几何知识的应用,达到“不算而解”的目的。
2. 抛物线及其性质的基本策略
(1)求抛物线的标准方程
①定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程。
②待定系数法:先定位,后定量。根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式,从简单化角度出发,焦点在x轴上,设为y2=ax(a≠0);焦点在y轴上,设为x2=by(b≠0).
(2)焦点弦问题和焦半径
①焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F■,0的距离PF=x0+■.
②通径:过焦点F■,0且与x轴垂直的弦PQ叫通径,PQ=2p.
③焦点弦的性质:过F■,0的弦AB所在的直线方程为y=kx-■(k不存在时为通径).
④弦长:AB=x1+x2+p=■(θ为弦AB的倾斜角);x1·x2=■,y1·y2= -p2;■+■=■;以弦AB为直径的圆与准线相切。
在抛物线y2=4x上找一点M,使MA+MF最小,其中A(3,2),F(1,0),求点M的坐标及此时的最小值。
思索 “看准线想焦点,看焦点想准线”,可根据抛物线的定义进行相互转化从而获得简捷、直观的求解。 数形结合是灵活解题的一条捷径。
破解:如图1,点A在抛物线y2=4x的内部,由抛物线的定义可知,MA+MF=MA+MH,其中MH为M到抛物线的准线的距离,过A作抛物线准线的垂线交抛物线于M1,垂足为B,则MA+MF=MA+MH≥AB=4,当且仅当点M在M1的位置时等号成立,此时点M1的坐标为(1,2).
斜率为1的直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A,B两点,求线段AB的长。
思索:求焦点弦的弦长有多种方法,既要掌握运算方法,也要考虑一些不算或少算的方法。 数形结合是解析几何中重要的思想方法之一。 一些问题中,充分发挥“形”的作用,可以最大限度地减少运算,“看出结果”。 我们不妨考虑问题的一般情形:斜率为k(倾斜角为θ)的直线l过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,如何“看出”焦点弦的弦长?
如图2,由图可以看出,FA=p-FAcosθ,FB=FBcosθ+p,所以AB=FA+FB=■+■=■. 求解过程非常直观,在已知直线倾斜角的情形下,可以直接“看出”焦点弦的弦长。 直线斜率存在时,由k=tanθ,破解 例2中,k=1(θ=45°),p=2,所以AB=8.
在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为■.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由。
思索 (1)由抛物线C的标准形式可得点F的坐标和准线方程,由圆心Q在弦OF的中垂线上可得点Q的纵坐标,再由点Q到抛物线C的准线的距离列出方程,确定p的值。
(2)存在性问题的常用方法是:先假设结论存在,进行演绎推理,若推出矛盾,则否定假设;若推出合理的结果,说明假设成立。
思路1:先求切线MQ的方程,结合弦OF的中垂线方程解点Q的坐标,再由点Q在弦OM的中垂线上解题即可。
思路2:先由点Q在弦OF,OM的中垂线上,再结合切线QM斜率的不同形式表示,列出方程思考。
1. 立足课本,夯实基础
掌握抛物线的定义、标准方程、简单性质等基础知识,深化对基础知识的理解,重视知识间的内在联系,提高应用数学思想方法解决问题的意识和能力。
2. 熟练通法,步步过关
对相对固定的题型,如弦长问题、面积问题等,解题思路、步骤相对固定,要以课本为例,以习题为模型,淡化技巧,理解通性通法,熟练步骤,能作出合理的算法途径设计,基本问题运算过关,破解“想得出,算不出、算不对”的瓶颈。
3. 重视抛物线的综合问题
重视抛物线与直线、圆等的综合研究,尤其是对性质中的一些定点、定值及相关结论的深入探究。高考试题往往有对圆锥曲线某方面几何性质的考虑,对性质深入的探究不在于知道一些结论,而是在这一过程中掌握探索的方法,理解解析几何的基本思想方法。
【抛物线的基本知识点】相关文章:
抛物线的基本知识点06-06
抛物线作文09-12
公民基本义务知识点09-22
抛物线作文【荐】09-20
大学语文基本知识点03-04
《民法的基本原则》复习知识点10-18
七年级语文上册基本知识点12-18
学业水平知识点英语知识点04-29
行文的基本规则08-16