有趣的数学小故事【集锦12篇】
有趣的数学小故事1
希帕蒂亚 (公元约370~约415) , 西罗马帝国时期著名的女数学家、天文学家和哲学家。她全力协助父亲注释了欧几里德的《几何原本》。后来《几何原本》成为世界各国中学几何学的教材, 先后出了1000 多种以上的版本。希帕蒂亚由於为欧氏几何的普及做出了卓越的贡献, 在数学发展史上成为第一位最杰出的女数学家而永载史册。

希帕蒂亚生在古埃及的亚历山大城, 她的父亲是托勒密王朝开始设立的文化研究院的院长, 是大数学家和知识渊博的学者。他对女儿天资聪颖又爱动脑子非常喜欢, 想方设法帮助她一步一步踏入知识的王国, 希望她长大以后也能成为一位受人尊敬的学者。
10 岁的希帕蒂亚已经显露出超人的才华。她用心攻读数学, 对欧几里德的《几何原本》已经有了初步的了解, 尤其对各种各样的数学应用题最感兴趣。有天清晨, 父女俩照例进行体育锻炼, 在林间草地上呼吸清新的空气。
这时一轮红日刚刚从地平线上升起。小希帕蒂亚全身早已热汗淋漓了, 可她还是不肯停止运动。
父亲说: “别练了孩子, 你该休息休息了。”
女儿说: “好。咱们在草坪上散步吧。”
太阳光照射在緑茵上, 花草树叶上的露珠开始消散了, 湿润空气中隐含一种淡淡的馨香。父女俩兴致勃勃地交谈着。
父亲说: “你看, 草地上咱们的影子是什么?”
女儿说: “一长一短, 一大一小, 一胖一瘦。我看爸爸的影子像一只大黑熊, 我的影子像一只小猴子。”
两个人都乐得哈哈笑个不止。
父亲说: “小东西, 也亏你想象得出来。”
女儿说: “本来就像么。再说它总是影子么。”
父亲说: “好吧。我问你, 这地上的影子又是怎样形成的呢?”
女儿说: “那还不简单?物体把太阳光挡住了, 不就成了影子?”
父亲说: “说得对。过几天我带你去参观有名的古埃及法老齐阿普斯的金字塔。到时候咱们要测量一下金字塔的高度。我要你先想一个最方便的测量方法。行吗?”
女儿高兴得跳起来, 说: “太好了。我一定要想出测量的.最好办法, 又简单又方便。”
父亲上班去了。小希帕蒂亚把自己关在书房里学功课。花园里鸟儿的鸣叫再也惊动不了她, 要是在平时, 她早就跑出去玩了。但是父亲要她先想好测量金字塔的方法, 而她到现在还没想好, 说什么也不能出去玩。她知道父亲的脾气, 要是完不成预先指定的任务, 游金字塔就会落空。
希帕蒂亚在桌子上画了许多张金字塔的图形, 聚精会神地思考着计算塔高的方法。父亲告诉过她: 金字塔的底部是一个正方形, 那么底部的边长就是能够用尺子测量出来的了。根据勾股弦定理, 很容易算出金字塔底面 (正方形) 对角线的长度, 如果再根据勾股弦定理演算, 只要知道金字塔一条棱的长度, 便很容易算出金字塔的高度了。
有趣的数学小故事2
一天,一个理发师挂出了一块招牌:“村里所有不自己理发的人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为如果他给自己理发,那么他就属于自己给自己理发的那一类。但是,招牌上说明他不给这类理发,因此他不能自己理发。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上说明他要给所有不自己理发的人理发,因此他应该自己理。由此可见,不管做怎样的推论,理发师所说的话总是自相矛盾的.。这是一个著名的悖论,称为“罗素悖论”。
这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为他们的基础。到19世纪末,全部数学几乎都建立在集合论是基础上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年“罗素悖论”的提出,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的变革。
有趣的数学小故事3
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”
0的兄弟姐妹们一口齐声的说:“好啊。”
8哥哥说:“0弟弟的.主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”
老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”
在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?
有趣的数学小故事4
1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。
他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。
整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。
他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的`一个极为重要的分支——群论。
第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”
他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。
数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。
费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。
关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。
为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。
自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。
在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。
有趣的数学小故事5
燃绳计时
一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的'时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
有趣的数学小故事6
当说罗马数字可能大家一时半会想不起来,那说起钟表上的数字,大家应该知道了。古罗马时期,罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。
他发现,有了“0”,进行数学运算方便极了,还把印度人使用“0”的方法向大家做了介绍。这件事被当时的.罗马教皇知道后,非常恼怒,并不赞同“0”存在,说在上帝创造的数里没有“0”这个怪物,还下令把这位学者抓起来用刑。虽然“0”被禁止使用,然而罗马的数学家们,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
有趣的数学小故事7
多少只袜子才能配成一对?
关于多少只袜子能配成对的问题,答案并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。
当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的',至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。
有趣的数学小故事8
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的.个数。你知道他们每人摘多少个桃子吗?
有趣的数学小故事9
陈景润是一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,被成为“数学王子”。但有谁会想到,他的`成就源于一个故事,这个故事也是十大经典数学小故事之一。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。当时陈景润瞪着眼睛,听得入神。从此,他对这个奇妙问题产生了浓厚的兴趣。
正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
有趣的数学小故事10
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组 成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半—— 即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默 契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的`数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然 是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当 时地球一天仅21.9小时,一年不是365天,而是400天。
有趣的数学小故事11
自己身体的计算器
我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的'手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的答案是63。
有趣的数学小故事12
大约1500年前,欧洲的数学家们是不明白用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照必须规则,把它们组合起来表示不一样的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他十分高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时光,这件事被当时的罗马教皇明白了。
当时是欧洲的中世纪,教会的势力十分大,罗马教皇的权利更是远远超过皇帝。教皇十分恼怒,他斥责说,神圣的数是上帝创造的.,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!
于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。之后“0”最后在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
【有趣的数学小故事】相关文章:
有趣的数学小故事05-31
有趣的数学小故事范例[9篇]06-02
【实用】有趣的数学小故事5篇06-02
有趣的小故事03-10
简短有趣的小故事09-16
数学小故事05-31
数学小故事03-10
趣味数学小故事05-31
趣味数学小故事03-12