的六年级数学上册知识点

时间:2025-10-15 12:10:56 数学

的六年级数学上册知识点

  在我们的学习时代,是不是听到知识点,就立刻清醒了?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点有助于大家更好的学习。下面是小编精心整理的的六年级数学上册知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

的六年级数学上册知识点

的六年级数学上册知识点1

  1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。

  2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。

  3、一个数乘分数的意义:可以看做是求这个数的几分之几。

  4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。

  5、整数乘法的交换律,结合律,分配率,对分数同样适用。

  6、乘积是一的两个数互为倒数。

  7、 2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的.意义:分数与整数的意义相同。

  8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几? (甲-乙)÷乙3.甲比乙少几分之几? (乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的意义:两数相除就叫做两个数的比比的前项相当于被除数,后项相当于除数,比值相当于商。

  9、前项相当于分子,后项相当于分母,比值相当于分数的值。

  10、 5单元圆圆是一种平面曲线图形。

  11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的数叫百分数。

  12、百分数也叫百分率和百分比。

  13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。

  15、 7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。

  16、扇形统计图的特点:能够更清楚地了解个部分和总数的关系。

  17、折线统计图的特点:不但可以表示出数量的多少,而且还能更清楚地表示数量的变化趋势。

  18、条形统计图的特点:能够清楚的看出数量的多少。

  19、 8单元数学广角用列方程或假设法。

的六年级数学上册知识点2

  第六单元 百分数

  1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

  例如:25%的意义:表示一个数是另一个数的25%。

  2、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

  3、小数与百分数互化的规则:

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左)

  4、百分数与分数互化的规则:

  把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  5、常用的分数、小数及百分数的互化

  21=0.5=50% 41=0.25=25%

  43=0.75=75% 51=0.2=20%

  52=0.4=40% 53=0.6=60%

  54=0.8=80% 81=0.125=12.5%

  83=0.375=37.5% 85=0.625=62.5%

  87=0.875=87.5% 101=0.1=10%

  161=0.0625=6.25% 201=0.05=5%

  251=0.04=4% 401=0.025=2.5%

  501=0.02=2% 1001=0.01=1%

  6、百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)

  7、求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)

  实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几 (甲-乙)÷乙

  求乙比甲少百分之几 (甲-乙)÷甲

  8、求一个数的百分之几是多少

  一个数(单位“1”) ×百分率

  9、已知一个数的百分之几是多少,求这个数 ?

  部分量÷百分率=一个数(单位“1”)

  10、浓度问题

  溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量

  溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度

  溶液(盐水)的重量×浓度=溶质(盐)的重量

  溶质(盐)的重量÷浓度=溶液(盐水)的重量

  最常用的是用方程解浓度问题

  比如两种不同浓度的溶液混合,最常用的数量关系是

  甲溶液质量×甲的浓度+乙溶液质量×乙的浓度

  =总溶液质量×总的浓度

  11、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

  “八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%

  公式:现价 = 原价 × 折数(通常写成百分数形式)利润 = 售价 - 成本

  利润率 = 成本利润×100%

  成数:表示一个数是另一个数十分之几的数,叫做成数。例如,今年的粮食产量比去年增产“二成”。“二成”即是十分之二,也就是今年的粮食产量比去年增加了20%。

  12、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的'税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。

  13、应纳税额:缴纳的税款叫应纳税额。

  14、税率:应纳税额与各种收入的比率叫做税率。

  15、应纳税额的计算:应纳税额=各种收入×税率

  例如:一家饭店十月份的营业额约是30万元,如果安营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  16、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  17、存款的类型:存款分为活期、整存整取、零存整取等方式。

  18、本金:存入银行的钱叫做本金。

  19、利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。

  20、国家规定,存款的利息要按5%(根据题目要求数据计算)的税率纳税。国债的利息不纳税。

  21、利率:利息与本金的比值叫做利率。

  22、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)

  23、银行存款利息的税金=利息×5% 或 =本金×利率×时间×5%

  第七单元 统计

  扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系。

  折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况。

  条形统计图的特点:能够清楚的看出数量的多少。

  补充一:图形计算公式

  1、正方形:周长=边长×4 面积=边长×边长

  2、长方形:周长=(长+宽)×2 长=周长÷2-宽

  面积=长×宽 长=面积÷宽

  3、三角形:面积=底×高÷2

  三角形高=面积 ×2÷底

  三角形底=面积 ×2÷高

  4、平行四边形:面积=底×高 底=面积÷高

  5、梯形:面积=(上底+下底)×高÷2

  高=面积 ×2÷(上底+下底)

  上底=面积 ×2÷高-下底

  6、圆形

  (1)周长=直径×圆周率(π)=2×圆周率π×半径

  (2)面积=半径×半径×圆周率(π)

  7、正方体 表面积=棱长×棱长×6

  体积=棱长×棱长×棱长

  8、长方体 表面积=(长×宽+长×高+宽×高)×2

  体积=长×宽×高

  补充二:其他应用题基本数量关系式

  平均数问题:总数÷总份数=平均数

  盈亏问题

  (盈+亏)÷两次分配量之差=参加分配的份数

  (大盈-小盈)÷两次分配量之差=参加分配的份数

  (大亏-小亏)÷两次分配量之差=参加分配的份数

  相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

  追及问题

  追及距离=速度差×追及时间

  追及时间=追及距离÷速度差

  速度差=追及距离÷追及时间

  年龄问题:年龄差永远不变

的六年级数学上册知识点3

  扇形统计图的意义:

  1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

  2、常用统计图的优点:

  (1)条形统计图直观显示每个数量的多少。

  (2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

  (3)扇形统计图直观显示部分和总量的关系。

  数学广角——数与形:

  2+4+6+8+10+12+14+16+18+20=(110)

  规律:从2开始的n个连续偶数的和等于n×(n+1)。

  10×(10+1)=10×11=110

  从1开始的连续奇数的和正好是这串数个数的平方。

  位置与方向:

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

  数对的作用:确定一个点的位置。经度和纬度就是这个原理。

  2、确定物体位置的方法:

  (1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。

  描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

  位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的.方向正好相反,而度数和距离正好相等。

  相对位置:东——西;南——北;南偏东——北偏西。

  数学梯形面积与周长公式:

  梯形的面积公式:(上底+下底)×高÷2。

  用字母表示:(a+b)×h÷2

  梯形的面积公式2:中位线×高

  用字母表示:l·h(l表示中位线长度)

  另外对角线互相垂直的梯形:对角线×对角线÷2

  梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d

  等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。

  数学分数的加减法知识点:

  1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

  2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

  3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

的六年级数学上册知识点4

  第一单元 位置

  1、什么是数对?

  ——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第)。

  注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  ( 列 , 行 )

  ↓ ↓

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  (从前往后看)

  2、图形左右平移行数不变;图形上下平移列数不变。

  3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  第二单元 分数乘法

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

  例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  例如: × 表示: 求 的 是多少?

  9 × 表示: 求9的 是多少?

  A × 表示: 求a的 是多少?

  (二)分数乘法计算法则:

  1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)

  2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

  注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c。

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a。

  注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  附:形如 的分数可折成( )×

  (四)分数乘法混合运算

  1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒数的意义:乘积为1的两个数互为倒数。

  1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

  2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

  例如:a×b=1则a、b互为倒数。

  3、求倒数的方法:

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  4、1的倒数是它本身,因为1×1=1

  0没有倒数,因为任何数乘0积都是0,且0不能作分母。

  5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。

  6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

  假分数的倒数小于或等于1。

  带分数的倒数小于1。

  (六)分数乘法应用题 ——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  “1”× =

  例如:求25的 是多少? 列式:25× =15

  甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15

  注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、( 什么)是(什么 )的 。

  ( )= ( “1” ) ×

  例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?

  甲数=乙数× 即25× =15

  注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。

  (2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。

  (3)单位“1”的量×分率=分率对应的量

  例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?

  甲数=乙数 ± 乙数× 即25±25× =25×(1± )=40(或10)

  3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  4、什么是速度?

  ——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间

  ——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

  5、求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙

  少:(乙-甲)÷乙

  第三单元 分数除法

  一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

  二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

  1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5

  2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的`倒数。

  3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

  4、被除数与商的变化规律:

  ①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c

  ②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)

  ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a

  三、分数除法混合运算

  1、混合运算用梯等式计算,等号写在第一个数字的左下角。

  2、运算顺序:

  ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

  ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

  注:(a±b)÷c=a÷c±b÷c

  四、比:两个数相除也叫两个数的比

  1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

  注:连比如:3:4:5读作:3比4比5

  2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

  例:12∶20= =12÷20= =0.6 12∶20读作:12比20

  注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

  3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

  3、化简比:化简之后结果还是一个比,不是一个数。

  (1)、 用比的前项和后项同时除以它们的最大公约数。

  (2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

  (3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

  4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

  5、比和除法、分数的区别:

  除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

  分数 分子 (——) 分母(不能为0) 分数的基本性质 分数是一个数

  比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

  附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  五、分数除法和比的应用

  1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)

  2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)

  3、分数应用题基本数量关系(把分数看成比)

  (1)甲是乙的几分之几?

  甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)

  乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)

  几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)

  (2)甲比乙多(少)几分之几?

  A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )

  B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )

  C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )

  D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)

  E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)

  (例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)

  4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

  例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?

  方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35

  方法二:甲:56× =21 乙:56× =35

  例如:已知甲是21,甲、乙的比3∶5,求乙是多少?

  方法一:21÷3=7 乙:5×7=35

  方法二:甲乙的和21÷ =56 乙:56× =35

  方法二:甲÷乙= 乙=甲÷ =21÷ =35

  5、画线段图:

  (1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

  (2)分析数量关系。

  (3)找等量关系。

  (4)列方程。

  注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。

  第四单元 圆

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形,.

  2、圆的特征:外形美观,易滚动。

  3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

  同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。

  (2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π= =周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr

  注:圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3

  4、半圆周长=圆周长一半+直径= ×2πr=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径 = 长方形的宽

  圆的周长的一半 = 长方形的长

  长方形面积 = 长 ×宽

  所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)

  S圆 = πr × r

  S圆 = πr×r = πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

  周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4

  则:S1∶S2∶S3=4∶9∶16

  4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)

  扇形面积 = πr2× (n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  注:一个圆的半径增加a厘米,周长就增加2πa厘米

  一个圆的直径增加b厘米,周长就增加πb 厘米

  6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

  第五单元、百分数

  一、百分数的意义:表示一个数是另一个数的百分之几。

  注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。

  百分数的分子可以是小数,分数的分子只以是整数。

  注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数 化 小数:分子除以分母。

  二、百分数应用题

  1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几

  2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几 (甲-乙)÷乙

  求乙比甲少百分之几 (甲-乙)÷甲

  3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率

  4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)

  5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣 成数 几分之几 百分之几 小数 通用

  八折 八成 十分之八 百分之八十 0.8

  八五折 八成五 十分之八点五 百分之八十五 0.85

  五折 五成 十分之五 百分之五十 0.5 半价

  6、 纳税 缴纳的税款叫做应纳税额。

  (应纳税额)÷(总收入)=(税率)

  (应纳税额)=(总收入)×(税率)

  7、 利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和储蓄的利息不纳税

  8、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几

  (2)求甲比乙多(少)百分之几—— ×100% = ×100%

  例

  ① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

  ② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

  ③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

  ④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

  ⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50

  ⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40

  ⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%

  ⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%

  ⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

  ⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

  乙比甲少20%,少10,甲是多少?10÷20%=50

  乙比甲少20%,少10,乙是多少?10÷20%-10=40

  乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

  甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

  乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

  甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40

  第六单元、统计

  1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

  2、 常用统计图的优点:

  (1)、条形统计图直观显示每个数量的多少。

  (2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

  (3)、扇形统计图直观显示部分和总量的关系。

  第七单元、数学广角

  一、研究中国古代的鸡兔同笼问题。

  1、 用表格方式解决有局限性,数目必须小,例:

  头数 鸡(只)兔(只) 腿数

  35 1 34

  35 2 33

  35 3 32

  ……

  (逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)

  2、 用假设法解决

  (1) 假如都是兔

  (2) 假如都是鸡

  (3) 假如它们各抬起一条腿

  (4) 假如兔子抬起两条前腿

  3、 用代数方法解(一般规律)

  注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

  二、和尚分馒头

  100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?

  国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:

  一百馒头一百僧,

  大僧三个更无争,

  小僧三人分一个,

  大小和尚各几丁?"

  如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?

  方法一,用方程解:

  解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:

  3x + (100-x)=100

  x=25

  100-25=75人

  方法二,鸡兔同笼法:

  (1)假设100人全是大和尚,应吃馒头多少个?

  3×100=300(个).

  (2)这样多吃了几个呢?

  300-100=200(个).

  (3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?

  3- = (个)

  (4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:

  小和尚:200÷ =75(人)

  大和尚:100-75=25(人)

  方法三,分组法:

  由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。

  这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:

  100÷(3+1)=25(组)

  大和尚:25×1=25(人)

  小和尚:100-25=75(人)或25×3=75(人)

  我国古代劳动人民的智慧由此可见一斑。

  三、整数、分数、百分数应用题结构类型

  (一)求甲是乙的几倍(或几分之几或百分之几)的应用题。

  解法:甲数除以乙数

  例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)

  (二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。

  解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。

  求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量

  例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?

  180×56 =150

  (三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。

  解法:对应数量÷对应分率=单位“1”

  例:育红小学六年级男生有120人,占参加活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?

  120÷35 =200(人)

的六年级数学上册知识点5

  一、课内重视听讲,课后及时复习

  课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

  首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯

  1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。

  2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

  3、对于一些易错题,可备有错题集,写出自己的.解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

  有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的解题习惯是非常重要的!

  三、调整心态,正确对待考试

  1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

  2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。

  由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

的六年级数学上册知识点6

  一、分数乘法

  (一)分数乘法的意义和计算法则

  1、分数乘整数的意义

  2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

  2、分数乘整数的计算方法

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

  3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

  4、分数乘分数的的计算方法

  分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

  (二)求一个数的几分之几是多少的问题

  1、找单位“1”的方法

  (1)是谁的几分之几,就把谁看作单位“1”。

  (2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

  注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

  分率不带单位,具体数量带有单位。

  2、求一个数的几倍、几分之几是多少,用乘法计算。

  15的3/5是多少? 15×3/5=9

  3、已知单位“1”用乘法计算

  单位“1”×分率=分率的对应量

  注意:(1) 乘上什么样的分率就等于什么样的数量。

  (2) 乘上谁占的分率就等于谁的数量。

  (3) 是谁的几分之几,就用谁乘上几分之几。

  4、已知A比B多(或少)几分之几,求A的解题方法

  5、积与因数的大小关系

  大于1的数,积大于A。

  A(0除外)乘上

  小于1的数,积小于A。

  二、位置与方向

  1、确定物体的位置:(上北下南,左西右东)

  (1)北偏东30°就是从北向东移,夹角靠北。

  (2)东偏北30°就是从东向北移,夹角靠东。

  2、物体位置的相对性

  (1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

  例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)

  南对北 东对西

  则学校在少年宫北偏西35°的方向上,相距250米。(在少年宫是以少年宫为观测点)

  三、分数除法

  (一)倒数的认识

  1、倒数的意义

  乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)

  2、求倒数的方法

  求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。

  是带分数的先化成假分数

  是小数的先化成分数

  整数的倒数:整数是几,它的倒数就是几分之一。

  3、 1的倒数是1,0没有倒数。

  (三)分数除法

  1、分数除法的意义

  3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

  2、分数除法的计算方法

  除以一个不等于0的数,等于乘这个数的.倒数。

  3、被除数与商的大小关系

  当除数小于1时,商就大于被除数。(0除外)

  当除数大于1时,商就小于被除数。(0除外)

  4、分数四则混合运算的运算顺序

  (1) 只有“+、-”或只有“×、÷”,从左往右计算。

  (2) 有“+、-”,也有“×、÷”,先乘除后加减。

  (3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

  (一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

  1、已知一个数的几分之几是多少,求这个数的问题

  例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

  2、求一个数是另一个数的几倍、几分之几,用除法计算。

  方法是:用“是”字前面的数÷“是”字后面的数。

  例:1、15是5的几倍? 15÷5=3

  2、20是25的几分之几? 20÷25=4/5

  3、求一个数比另一个数多(或少)几分之几的解题方法是:

  用相差量÷问题“比”字后面的量

  例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

  (2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

  4、求单位“1”用除法计算。

  具体量(对应量)÷对应分率=单位“1”

  什么样的数量就对应什么样的分率。

  什么样的分率就对应什么样的数量。

  5、求平均数问题: 总量÷总份数=每份数

  注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

  6、已知A比B多(或少)几分之几,求B的解题方法:

  A÷(1+/-几分之几)=B

  7、已知单位“1”用乘法,求单位“1”用除法;

  分率比多的就1+,比少的就1-。

  8、工程问题

  把工作总量看作“1”,工作效率就是1/工作时间。

  工作时间=工作量 ÷ 工作效率

  要做的工作量 由谁做就除以谁的工作效率

  1人的效率=两人的效率和-另1人的效率

的六年级数学上册知识点7

  1、国债利息的计算公式:利息=本金×利率×时间

  2、本息:本金与利息的总和叫做本息。

  3、应纳税额:缴纳的税款叫应纳税额。

  4、税率:应纳税额与各种收入的比率叫做税率。

  5、应纳税额的计算:应纳税额=各种收入×税率

  例如:李/老师把20xx元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李/老师的本金和利息共有多少元?

  解题思路:要求“本金和利息共有多少元”应该用本金的20xx元加上利息的.。

  解题步骤:第一步:根据“利息=本金×利率×时间”算利息

  利息:20xx×4.14%×5=414元

  第二步:本金+利息:20xx+414=2414元。

  例如:李/老师把20xx元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李/老师的本金和利息共有多少元?(如果利息按20%来上税)

  解题思路:要求“本金和利息共有多少元”应该用本金的20xx元加上利息的。

  解题步骤:第一步:根据“利息=本金×利率×时间”算利息

  利息:20xx×4.14%×5=414元

  第二步:算税后利息:414×(1—20%)=331.2元

  本金+利息:20xx+331.2=233.2元。

的六年级数学上册知识点8

  第一单元分数乘法

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数乘法混合运算

  1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒数的意义:乘积为1的两个数互为倒数。

  1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

  2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。

  3、求倒数的方法:

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  4、1的倒数是它本身,因为1×1=1。

  0没有倒数,因为任何数乘0积都是0,且0不能作分母。

  5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

  假分数的倒数小于或等于1。带分数的倒数小于1。

  (六)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、什么是速度?

  速度是单位时间内行驶的路程。

  速度=路程÷时间

  时间=路程÷速度

  路程=速度×时间

  单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

  4、求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙

  少:(乙-甲)÷乙

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

  数对的作用:确定一个点的位置。经度和纬度就是这个原理。

  2、确定物体位置的方法:

  (1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。

  描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

  位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

  相对位置:东-西;南-北;南偏东-北偏西。

  第三单元分数的除法

  一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

  二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

  1、被除数÷除数=被除数×除数的倒数。

  2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

  3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

  4、被除数与商的变化规律:

  ①除以大于1的数,商小于被除数:a÷b=c,当b>1时,c

  ②除以小于1的数,商大于被除数:a÷b=c,当b<1时,c>a。(a≠0,b≠0)

  ③除以等于1的数,商等于被除数:a÷b=c,当b=1时,c=a。

  三、分数除法混合运算

  1、混合运算用梯等式计算,等号写在第一个数字的'左下角。

  2、运算顺序:

  ①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

  ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

  (a±b)÷c=a÷c±b÷c

  第四单元比

  比:两个数相除也叫两个数的比

  1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

  连比,如:3:4:5读作:3比4比5。

  2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

  例:12∶20=12÷20=0.6

  12∶20读作:12比20。

  区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

  3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

  4、化简比:化简之后结果还是一个比,不是一个数。

  (1)用比的前项和后项同时除以它们的最大公约数。

  (2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

  (3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

  5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

  6、比和除法、分数的区别:

  除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。

  分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。

  比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系。

  商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  分数除法和比的应用

  1、已知单位“1”的量用乘法。

  2、未知单位“1”的量用除法。

  3、分数应用题基本数量关系(把分数看成比)

  (1)甲是乙的几分之几?

  甲=乙×几分之几

  乙=甲÷几分之几

  几分之几=甲÷乙

  (2)甲比乙多(少)几分之几?

  4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

  5、画线段图:

  (1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

  (2)分析数量关系。

  (3)找等量关系。

  (4)列方程。

  两个量的关系画两条线段图,部分和整体的关系画一条线段图。

  第五单元圆

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π =周长÷直径≈3.14。

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径= πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

  周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

  一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

  第七单元扇形统计图的意义

  1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

  2、常用统计图的优点:

  (1)条形统计图直观显示每个数量的多少。

  (2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

  (3)扇形统计图直观显示部分和总量的关系。

  第八单元数学广角--数与形

  2+4+6+8+10+12+14+16+18+20=(110)

  规律:从2开始的n个连续偶数的和等于n×(n+1)。

的六年级数学上册知识点9

  1、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

  2、轴对称图形:

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

  折痕所在的这条直线叫做对称轴。(经过圆心的`任意一条直线或直径所在的直线)

  3、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

  4、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

  只有2条对称轴的图形是:长方形

  只有3条对称轴的图形是:等边三角形

  只有4条对称轴的图形是:正方形;

  有无数条对称轴的图形是:圆、圆环。

的六年级数学上册知识点10

  1、本金:存入银行的钱叫做本金。

  2、利息:取款时银行多支付的钱叫做利息。

  利息=本金×利率×时间

  3、20xx年10月9日以前国家规定,存款的利息要按20%的税率纳税。国债的'利息不纳税。20xx年10月9日以后免收利息税。所以如无特殊说明,就不在计算利息税。

  4、利率:利息与本金的比值叫做利率。

  5、银行存款税后利息的计算公式:税后利息=利息×(1-20%)

的六年级数学上册知识点11

  1、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。

  (其中R=r+环的宽度)

  2、半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

  半圆的周长公式:

  C=πd/2+d

  或C=πr+2r

  圆周长的一半=πr

  3、半圆面积=圆的面积÷2

  公式为:S=πr2/2

  4、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

  例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

  5、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的.平方。

  例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

  圆周长和直径的比是π:1,比值是π

  圆周长和半径的比是2π:1,比值是2π

的六年级数学上册知识点12

  1、理解比例的意义和基本性质,会解比例。

  2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

  3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

  4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

  5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

  6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

  7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

  8、组成比例的四个数,叫做比例的项。两端的.两项叫做外项,中间的两项叫做内项。

  9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

  10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

  求比例中的未知项,叫做解比例。

  例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

  11、正比例和反比例:

  (1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

  例如:

  ①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

  ②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

  ③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

  ④y=5x,y和x成正比例,因为:y÷x=5(一定)。

  ⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

  (2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)

  例如:

  ①路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

  ②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

  ③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

  ④40÷x=y,x和y成反比例,因为:x×y=40(一定)。

  ⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

  12、图上距离:实际距离=比例尺;

  例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

  13、实际距离=图上距离÷比例尺;

  例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

  14、图上距离=实际距离×比例尺;

  例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

  1、根据方向和距离可以确定物体在平面图上的位置。

  2、在平面图上标出物体位置的方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4、绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

的六年级数学上册知识点13

  1、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  2、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的'几分之几;所对的弧就占圆周长的几分之几、

  3、当长方形,正方形,圆的周长相等时,圆的面积,长方形的面积最小

  4、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  5、有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

  有2条对称轴的图形是:长方形

  有3条对称轴的图形是:等边三角形

  有4条对称轴的图形是:正方形

  有无数条对称轴的图形是:圆、圆环。

的六年级数学上册知识点14

  一、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  例如15:10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)15∶10=3/2前项比号后项比值

  3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

  4、区分比和比值

  (1)比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  (2)比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、比和除法、分数的联系:

  (1)比前项比号“:”后项比值

  (2)除法被除数除号“÷”除数商

  (3)分数分子分数线“—”分母分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  10、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

  例如:15∶10=15÷10=15/10=3/2

  二、比的`基本性质

  1、根据比、除法、分数的关系:

  (1)商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  (2)分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  (3)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4、化简比:用求比值的方法。注意:最后结果要写成比的形式。

  例如:15∶10=15÷10=15/10=3/2=3∶2

  还可以15∶10=15÷10=3/2最简整数比是3∶2

  5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

  6、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

  (1)用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

  例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

  1+4=5糖占1/5用25×1/5得到糖的数量,水占4/5用25×4/5得到水的数量。

  (2)用分数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

  例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

  糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

  三、小学数学新课标的基本理念

  1、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

  2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

  3、学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  四、小学数学广角知识点

  1、数不仅可以用来表示数量和顺序,还可以用来编码。

  2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。

  3、身份证号码:由18位组成:

  (1)前1、2位数字表示:所在省份的代码;

  (2)第3、4位数字表示:所在城市的代码;

  (3)第5、6位数字表示:所在区县的代码;

  (4)第7~14位数字表示:出生年、月、日;

  (5)第15、16位数字表示:所在地的派出所的代码;

  (6)第17位数字表示性别:奇数表示男性,偶数表示女性;

  (7)第18位数字是校检码:用来检验身份证的正确性。校检码可以是0~9的数字,有时也用x表示。

的六年级数学上册知识点15

  一、百分数的意义和写法

  (一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

  (二)、百分数和分数的主要联系与区别:

  联系:都可以表示两个量的倍比关系。

  区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

  分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。

  ②、百分数的分子可以是整数,也可以是小数;

  分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

  二、百分数和分数、小数的互化

  (一)百分数与小数的互化:

  1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

  2.百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

  (二)百分数的和分数的互化

  1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

  2、分数化成百分数:

  ①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

  ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)

  (三)常见分数小数百分数之间的互化;

  三、用百分数解决问题

  (一)一般应用题

  1、常见的百分率的计算方法:

  一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

  2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

  例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。

  列式是:15÷20=15/20=75%

  3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:

  (1)百分率前是“的”:单位“1”的量×百分率=百分率对应量

  (2百分率前是“多或少”的数量关系:

  单位“1”的量×(1±百分率)=百分率对应量

  4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

  解法:(1)方程:根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法):百分率对应量÷对应百分率=单位“1”的量

  5、求一个数比另一个数多(少)百分之几的'方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

  百分率前是“多或少”的关系式:

  (比少):具体量÷ (1-百分率)=单位“1”的量;

  例如:大米有50千克,比面粉树少50%,面粉有多少千克。

  列式是:50÷(1-50%)

  (比多):具体量÷ (1+百分率)=单位“1”的量

  例如:工人做110个零件,比原计划多做了10%,原计划做多少个?

  列式是:110÷(1+10%)

  6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

  用两个数的相差量÷单位“1”的量=百分之几

  即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  甲比乙多几分之几的问题,方法A,(甲-乙)÷乙(建议用)

  方法B,甲÷乙-100%

  例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?

  列式是:(50-40)÷40=0.25=25%

  ②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)

  方法B,100%-乙÷甲

  例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?

  (100-90)÷100=0.1=10%

  说明:多百分之几不等于少百分之几,因为单位一不同。

  7、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

  8、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学分数加减法知识点

  一、分数的意义

  1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

  二、分数与除法的关系,真分数和假分数

  1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

  2、真分数和假分数:

  ①分子比分母小的分数叫做真分数,真分数小于1。

  ②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

  ③由整数部分和分数部分组成的分数叫做带分数。

  3、假分数与带分数的互化:

  ①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

  ②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

  三、分数的基本质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

  四、分数的大小比较

  ①同分母分数,分子大的分数就大,分子小的分数就小;

  ②同分子分数,分母大的分数反而小,分母小的分数反而大。

  ③异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)

  五、约分(最简分数)

  1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

  2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)

  注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

  六、分数和小数的互化:

  1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

  2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)

  如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。

  3、分数和小数比较大小:一般把分数变成小数后比较更简便。

  七、分数的加法和减法

  1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

  2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。

  3、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。

  4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

【的六年级数学上册知识点】相关文章:

六年级上册数学知识点08-05

六年级数学上册知识点10-31

六年级上册数学方程知识点09-20

六年级上册数学知识点01-13

初二数学上册知识点09-26

六年级上册数学圆的知识点整理01-17

六年级数学上册圆形知识点11-03

六年级上册数学知识点总结10-06

沪教版数学六年级上册知识点08-19

初二数学上册知识点汇总10-26