小学数学的知识点总结

时间:2025-04-17 11:35:20 赛赛 数学 我要投稿

小学数学的知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,通过它可以正确认识以往学习和工作中的优缺点,不如我们来制定一份总结吧。那么你知道总结如何写吗?下面是小编收集整理的小学数学的知识点总结,欢迎阅读与收藏。

小学数学的知识点总结

  小学数学的知识点总结 1

  一、认识数

  (一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。

  (二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。

  二、数一数

  (一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。

  (二)、数复杂图形数复杂图形时可以按大小分类来数。

  (三)、数数按条件的要求去数。

  三、比较数列

  比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。

  四、动手做

  (一)、摆一摆要善于寻找不同的方法。

  (二)、移一移

  五、找规律

  (一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。

  (二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。

  (三)、数表的规律把一些数按照一定的.规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。

  六、填一填

  (一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。

  (二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。

  七、比较2个算式的大小的方法是:

  (1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;

  (2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;

  (3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;

  (4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。

  八、总结

  应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。

  小学数学的知识点总结 2

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的`概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

  小学数学的知识点总结 3

  第一单元 数据整理与收集

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  第二单元 表内除法(一)

  1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  例:24本练习本,平均分给6人,每人分多少本?

  列式:24÷6=4

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  例:24本练习本,每人4本,能分给多少人?

  列式:24÷4=6

  3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

  除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  例如:12÷4=3读作(12除以4等于3)

  例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。

  4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

  5.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  例:用“三八二十四”这句口诀

  A、24÷3=8 B、3×8=24

  C、24÷3=8 D、24÷8=3

  计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

  6.解决问题

  1、解决有关平均分问题的方法:

  总数÷每份数=份数、总数÷份数=每份数、

  因数×因数=积、一个因数=积÷另一个因数

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  (3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

  (4)24里面有( )个4,20里面有( )个5。(用除法计算。)

  (5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

  第三单元 图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

  成轴对称图形的汉字:

  一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

  (记住:平移只能上下移动或左右移动)

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)

  (一)填空

  1、汽车在笔直的公路上行驶,车身的运动是( )现象

  2、教室门的打开和关闭,门的运动是( )现象。

  A.平移 B旋转 C平移和旋转

  3、下面( )的运动是平移。

  A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

  第四单元 表内除法(二)

  这单元主要是考口算题。有以下几种形式:

  1、用7、8、9的乘法口诀求商

  求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

  例.直接口算:28÷4 8÷8

  2、解决问题

  求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

  例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

  第五单元 混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分布计算,也可以列综合算式。

  请画出先算哪一步,再算哪一步(并标上1和2)

  1、同级运算的类型:

  例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

  2、不同级运算的类型:

  例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

  3、带小括号运算的类型:方法:算式里有括号的.,要先算括号里面的。

  例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

  4.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

  例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________

  5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

  例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

  先算____________________再算____________________

  例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

  6.练习十三 第4题 (重点)

  1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?

  2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?

  3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

  4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

  第六单元 有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  例:43÷7=()…( )余数可能是( )或者余数最大是( )

  (2)至少问题(进一法):商+1

  例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

  (3)最多问题(去尾法)

  例:小丽有10元钱,买3元一个的面包,最多能买几个?

  课例:

  1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  第七单元 万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如453 ; 1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 ; 978

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219

  补充:

  1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

  2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

  3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克)

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

  小学数学的知识点总结 4

  一生活中的数

  (一)本单元知识网络:

  (二)各课知识点:

  可爱的校园(数数)

  知识点:

  1、按一定顺序手口一致地数出每种物体的个数。

  2、能用1-10各数正确地表述物体的数量。

  快乐的家园(10以内数的认识)

  知识点:

  1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。

  2、在数数过程中认识1-10数的符号表示方法。

  3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。

  玩具(1~5的认识与书写)

  知识点:

  1、能正确数出5以内物体的个数。

  2、会正确书写1-5的数字。

  小猫钓鱼(0的认识)

  知识点:

  1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

  2、学会读、写“0”。

  文具(6~10的`认识与书写)

  知识点:

  1、能正确数出数量是6-10的物体的个数。

  2、会读写6—10的数字。

  小学数学的知识点总结 5

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的'分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

  小学数学的知识点总结 6

  第一单元混合运算

  知识点一、

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  知识点二、

  关于“0”的运算

  1、“0”不能做除数;

  字母表示:a÷0错误

  2、一个数加上0还得原数;

  字母表示:a+0=a

  3、一个数减去0还得原数;

  字母表示:a-0=a

  4、被减数等于减数,差是0;

  字母表示:a-a=0

  5、一个数和0相乘,仍得0;

  字母表示:a×0=0

  6、0除以任何非0的数,还得0;

  字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二单元观察物体

  1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。

  2、总结:同一立体图形从不同角度观察会有不同的形状。

  第三单元加与减

  第一节捐书活动

  知识点:

  1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。

  2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第二节运白菜

  1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。

  2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第三节节余多少钱

  三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。

  第四节里程表(一)

  1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。

  2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。

  第五节里程表(二)

  1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数

  2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。

  第四单元乘与除

  第一节小树有多少棵

  知识点:

  1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。

  2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。

  3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。

  4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。

  第二节需要多少钱

  知识点:

  1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。

  2、计算混合运算时,要先明确运算顺序,再计算。

  第三节丰收了

  知识点:1、整十数除以一位数的口算方法:

  (1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。

  (2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。

  2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。

  第四节植树

  知识点:1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。

  2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。

  第五单元周长

  知识点1:什么是周长

  1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。

  2、不规则物体或图形的测量方法:绳子测量法。

  3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。

  知识点二:长方形的周长

  1、求长方形的周长必须满足两个条件:已知长和宽的长度。

  2、长方形周长的计算方法:

  (1)长方形的周长=长+宽+长+宽

  (2)长方形的周长=长×2+宽×2

  (3)长方形的周长=(长+宽)×2

  (4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”

  (5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”

  3、正方形周长的计算方法:

  (1)可以把4条边长加起来;

  (2)用一条边长乘以4,即正方形的周长=边长×4

  4、靠墙围成的长方形有两种情况:

  (1)长边靠墙,

  (2)宽边靠墙。

  5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。

  第六单元乘法

  第一节蚂蚁做操

  知识点:

  1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。

  2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。

  第二节去游乐园

  知识点:

  1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。

  2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。

  第三节乘火车

  知识点:

  1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。

  2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。

  第四节去奶奶家

  知识点:

  借助里程图解决问题时,一定要明确里程图中的.数学信息,理解题意后再进行计算。

  第五节:0×5=?

  知识点:

  1、0和任何数相乘都等于0。

  2、一个乘数末尾有0的乘法的计算方法:

  (1)先用这个乘数0前面的数乘另一个乘数;

  (2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.

  3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。

  4、结论:

  (1)因数的末尾有0,乘积中一定有0。

  (2)因数的中间有0,乘积中不一定有0。

  第六节买矿泉水

  知识点:

  1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。

  2、连乘的运算顺序:按从左到右的顺序依次计算。

  3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。

  第七单元年月日

  第一节看日历(一)

  知识点:

  1、一年有12个月。

  2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。

  3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个

  第二节看日历(二)

  知识点:

  1、2月29日是个特殊的日子,只有4年才出现。

  2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。

  3、认识平年和闰年:

  (1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。

  (2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.

  (3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。

  (4)平年一年有52个星期零1天,闰年一年有52个星期零2天。

  365÷7=52(个)......1(天)

  366÷7=52(个)......2(天)

  4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。

  第三节一天的时间

  知识点:

  1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。

  2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,

  3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。

  4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。

  5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。

  第四节:时间表

  知识点:1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。

  2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。

  3、判断谁跑得快,只要看谁用的时间短就可以了。

  第五节数学好玩

  知识点:

  1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。

  2、地面上一定范围内的直线距离可以直接用直尺来测量。

  3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。

  4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。

  5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。

  第八单元认识小数

  第一节文具店

  知识点:1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。

  2、小数由整数部分、小数点、和小数部分组成。

  3、一个小数的小数部分有几位数,它就是几位小数。

  4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。

  5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。

  6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。

  7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。

  第二节货比三家

  知识点

  1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。

  2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。

  第三节存零用钱

  知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  第四节寄书

  1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。

  第五节能通过吗

  1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。

  2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。

  3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。

  小学数学的知识点总结 7

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

  2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的'概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

  小学数学的知识点总结 8

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的进位加法与退位减法的.计算方法进行正确的计算。

  2、经历与他人交流各自算法的过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

  4、能利用图形设计美丽的图案。

  小学数学的知识点总结 9

  1、一个因数是两位数的乘法法则

  (1)、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  (2)、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  (3)、然后把两次乘得的数加起来。

  2、除数是两位数的除法法则

  (1)、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,(2)、除到被除数的哪一位就在哪一位上面写商;

  (3)、每求出一位商,余下的数必须比除数小。

  3、万级数的读法法则

  (1)、先读万级,再读个级;

  (2)、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  (3)、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  4、多位数的.读法法则

  (1)、从高位起,一级一级往下读;

  (2)、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  (3)、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  5、计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  6、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  7、除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  8、同分母分数相加减,分母不变,只把分子相加减。

  9、带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  10、分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  11、异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  12、围成一个图形所有边长的总和就是这个图形的周长。

  13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  14、两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  15、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  16、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  17、积=因数×因数 一个因数=积÷另一个因数。

  18、面积计量单位及进率:

  平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷

  1平方千米=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  19、质量单位及进率:

  吨、千克、公斤、克

  1吨=1000千克

  1千克=1公斤

  1千克=1000克

  20、体积容积计量单位及进率:

  立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升 1立方厘米=1毫升

  21、长度计量单位及进率:

  千米(公里)、米、分米、厘米、毫米

  1千米=1公里 1千米=1000米

  1米=10分米 1分米=10厘米

  1厘米=10毫米

  22、长方形面积=长×宽,计算公式S=ab

  23、正方形面积=边长×边长,计算公式S=a×a=a2

  24、长方形周长=(长+宽)×2,计算公式C=(a+b)×2

  25、正方形周长=边长×4,计算公式C=4a

  26、平行四边形面积=底×高,计算公式S=ah

  27、三角形面积=底×高÷2,计算公式S=a×h÷2

  28、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2

  29、长方体体积=长×宽×高,计算公式V=abh

  30、圆的面积=圆周率×半径平方,计算公式V=πr2

  31、正方体体积=棱长×棱长×棱长,计算公式V=a3

  32、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh

  34、圆柱的体积=底面积×高,计算公式V=sh

  35、比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  小学数学的学习方法

  1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。

  4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。

  5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

  小学数学的知识点总结 10

  1.根据方向和距离可以确定物体在平面图上的位置。

  2.在平面图上标出物体位置的.方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4.绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

  小学数学的知识点总结 11

  竖式除法

  1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

  2、进一步体会除法的意义。

  有余数的除法

  1、体会有余数除法的意义。

  2、积累正确的试商方法。

  4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

  5、能运用有余数除法的知识解决一些简单的实际问题。

  分苹果(竖式除法)

  知识点:

  1、掌握表内除法竖式的书写格式。

  2、掌握除法竖式的写法和每一步所表示的含义。

  分橘子(有余数的除法(一))

  知识点:

  1、体会有余数除法的意义。

  2、会用竖式表示有余数的除法,了解余数一定要比除数小。

  分草莓(有余数的除法(二))

  知识点:

  1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

  2、能运用有余数除法的知识解决一些简单的实际问题。

  租船(有余数除法的应用(一))

  知识点:

  灵活运用有余数的除法的有关知识解决生活中的简单实际问题。

  派车(有余数除法的应用(二))

  知识点:

  灵活运用有余数除法及相关知识解决生活中的简单实际问题。

  认识分米、毫米、千米

  1、分米用字母dm表示,1分米写成1dm

  2、毫米用字母mm表示,1毫米写成1mm

  3、千米用字母km表示,1千米写成1km

  米、分米、厘米、毫米、千米之间的换算

  1、1厘米=10毫米或1cm=10mm

  2、1分米=10厘米或1dm=10cm

  3、1米=100厘米或1m=100cm

  4、1米=10分米或1m=10dm

  5、1千米=1000米或1km=1000m

  感受1分米、1毫米、1千米间的实际长度

  1、一张IC卡的厚度大约是1毫米

  2、1扎的长度大约是1分米

  3、公共汽车两站地间的距离大约是1千米

  4、根据具体情境选择合适的长度单位

  铅笔有多长(分米、毫米的认识)

  知识点:

  通过实际测量,了解米、分米、厘米、毫米之间的关系。

  1分米=10厘米或1dm=10cm;

  1米=10分米或1m=10dm;

  1厘米=10毫米或1cm=10mm;

  2、知道1分米或1毫米的实际长度。

  3、能利用长度单位之间关系进行单位换算

  1千米有多长(千米的认识)

  知识点:

  1、体验1千米有多长。

  2、了解千米和米之间的关系;1千米=1000米或1km=1000m。

  3、能正确使用长度单位。

  认识角(角的初步认识)

  知识点:

  1、角是由一个顶点和两条直直的边组成的;

  2、角的各部分名称、记法和读法;

  3、能用角的符号(“∠”)表示角;

  4、会比较角的大小。了解角的大小与两边张口的大小有关,与边的长短无关;

  5、能辨认直角、锐角和钝角。

  长方形与正方形

  知识点:

  1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

  2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。

  3、能在方格纸上画出长方形与正方形。

  平行四边形

  知识点:

  1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

  2、初步了解长方形是特殊的平行四边形。

  欣赏与设计

  知识点:

  1、进一步掌握已学过的图形,感受图形之美。

  2、能用学过的图形在方格纸上设计图案,涂色时有一定规律性。

  认识新的数计数单位

  1、认识计数单位“千”“万”

  2、万以内计数单位间的`关系

  3、万以内数位顺序表

  万以内数的。读写

  1、会读万以内的数

  2、会写万以内的数

  3、感受“满十进一”的十进制计数法

  万以内数比较大小

  1、会比较万以内数的大小

  2、会用符号表示万以内数的大小

  3、结合实际进行万以内数的估计。

  数一数(认识新的计数单位)

  知识点:

  1、认识计数单位“千”“万”。

  2、了解万以内计数单位间的关系:10个一是十;10个十是一百;10个一百是一千;10个一千是一万。

  3、掌握万以内数的数位顺序。从右起第一位开始依次为个位,十位,百位,千位,万位。

  4、结合具体情景,对“一千”和“一万”有具体的感受。

  5、初步感受“满十进一”的十进制计数法。

  拨一拨(万以内数的读写)

  知识点:

  1、会数数:一个一个地数;十个十个地数;一百一百地数等。

  2、会读万以内的数:从高位起,依次读出每个数位上的数,末尾有零都不读,中间有一个或两个零只读一个零。

  3、会写万以内的数:从高位起,依次写出每个数位上的数,哪位上一个单位也没有,就在那位上写零。

  4、初步感受“满十进一”的十进制计数法。

  比一比(万以内数比较大小)

  知识点:

  1、会比较万以内数的大小。方法:先比较数位的多少,数位多的数比较大,如果数位相同,先比最高位,最高位上的数相同,就比较下一位……

  2、能够用符号表示万以内数的大小。

  3、能结合实际进行万以内数的估计。

  统计表

  1、读懂信息

  2、分析信息、预测信息

  条形统计图

  1、读懂

  纵向:用直条的高矮表示(横向表示类别竖向表示数量)

  横向:用直条的长短表示(竖向表示类别横向表示数量)

  2、亲自经历收集数据

  3、绘制条形统计图并做出分析

  读统计图表(条形统计图)

  知识点:

  1、能读懂统计图表,从统计图表中获得信息。

  2、认识条形统计图,体会条形统计图能直观地表示数量的多少。

  3、能根据统计图表进行简单的分析。

  讨论(统计图表)

  知识点:

  1、对统计图表中的数据作初步的分析和预测。

  2、通过“泡豆芽”小实验记录的数据,能在方格纸上绘制统计图并作出分析。

  辨认方向

  1、给定一个方向,辨认其余的七个方向

  2、用八个方向的词语描述物体所在的位置

  认识路线

  1、会使用八个方向认识简单的路线图。

  2、路线图说出从出发地到目的地行走方向、距离和经过的地方。

  辨认方向

  知识点:

  1、结合具体情境给定一个方向(东、南、西或北),能辨认其余的七个方向,并能用这些词语描述物体所在的位置。

  2、能根据给定的一个方向,辨认地图中的其他七个方向。

  认识路线

  知识点:

  1、学会使用八个方向认识简单的路线图。

  2、能根据路线图说出从出发地到目的地行走的方向、距离和经过的地方。

  小学数学的知识点总结 12

  时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

  8、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分1分=60秒

  半时=30分60分=1时

  60秒=1分30分=半时

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  最大的三位数是位999,最小的三位数是100,最大的`四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式

  和=加数+另一个加数

  加数=和-另一个加数

  减数=被减数-差

  被减数=减数+差

  差=被减数-减数

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

  ①进率是10:

  1米=10分米, 1分米=10厘米,

  1厘米=10毫米, 10分米=1米,

  10厘米=1分米, 10毫米=1厘米,

  ②进率是100:

  1米=100厘米, 1分米=100毫米,

  100厘米=1米, 100毫米=1分米

  ③进率是1000:

  1千米=1000米, 1公里==1000米,

  1000米=1千米, 1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克

  1000千克= 1吨1000克=1千克

  倍的认识

  1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

  2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

  多位数乘一位数

  1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

  3、因数末尾有几个0,就在积的末尾添上几个0。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程

  每节车厢的人数×车厢的数量=全车的人数

  5、(关于“大约)应用题:

  ①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

  ②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

  ③条件和问题中都有“大约”,求近似数,用估算。→(≈)

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  正方形的周长=边长×4

  正方形的边长=周长÷4,

  长方形的周长=(长+宽)×2

  长方形的长=周长÷2-宽,

  长方形的宽=周长÷2-长

  分数的初步认识

  1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。

  小学数学的知识点总结 13

  1、人民币的单位有:元、角、分,相邻单位的`进率是10,即1元=10角,1角=10分。

  2、人民币按制作材料分为纸币和硬币两种,按单位分为元币、角币和分币三种。其中元币共有七种,分别是1元、2元、5元、10元、20元、50元和100元;角币共有三种,分别是1角、2角和5角;分币也有三种,分别是1分、2分和5分。

  3、人民币的换算:

  (1)2元8角=(28)角

  2元10角=(30)角

  (2)2元8角=(2.80)元

  2元10角=(3)元

  (3)2.15元=(2)元(1)角(5)分

  12.00元=(12)元

  (4)0.70元=(7)角

  0.05元=(5)分

  4、换钱

  (1)换成一种:1张10元可以换(5)张2元

  (2)换两种以上:1张10元可以换(4)张2元和(2)张1元

  5、解决问题类型:

  毛巾8元5角,香皂4元8角,牙膏5元,牙刷2元6角

  (1)牙膏和牙刷一共多少钱?

  5元+2元6角=7元6角

  答:牙膏和牙刷一共要7元6角。

  (2)牙膏比牙刷贵多少钱?

  5元—2元6角=2元4角

  答:牙膏比牙刷贵2元4角。

  (3)香皂比毛巾便宜多少钱?

  8元5角—4元8角=3元7角

  答:香皂比毛巾便宜3元7角。

  (4)用10元钱买毛巾和牙刷,够吗?

  8元5角+2元6角=11元1角

  10元

  答:不够。

  (5)用10元钱买一块香皂,应找回多少钱?

  10元—4元8角=5元2角

  答:应找回5元2角。

  (6)用10元钱买毛巾和香皂够吗?如果不够,还差多少钱?

  8元5角+4元8角=13元3角

  13元3角—10元=3元3角

  答:不够,还差3元3角。

  (7)20元钱能买哪些东西,应找回多少钱?

  8元5角+4元8角+5元=18元3角

  20元—18元3角=1元2角

  答:20元可以买毛巾、香皂和牙膏,应找回1元2角。

  小学数学的知识点总结 14

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

  2、除数不是整十数的两位数的除法的.试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

【小学数学的知识点总结】相关文章:

小学数学的知识点总结08-10

小学数学知识点总结08-20

小学数学知识点总结03-31

小学数学知识点总结09-11

小学数学的知识点01-06

小学数学知识点归纳总结10-19

【优秀】小学数学的知识点总结15篇08-10

小学数学知识点总结:数的方法10-08

小学数学知识点09-18

小学数学知识点09-06