数学 百文网手机站

高一数学基本性质知识点归纳

时间:2021-07-21 16:59:12 数学 我要投稿

高一数学基本性质知识点归纳

  1、函数单调性

高一数学基本性质知识点归纳

  (1).增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

  必须是对于区间D内的任意两个自变量x1,x2;当x1

  (2) 图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

  (3).函数单调区间与单调性的判定方法

  (A) 定义法:

  任取x1,x2D,且x1

  (B)图象法(从图象上看升降)_

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

  函数 单调性

  u=g(x) 增 增 减 减

  y=f(u) 增 减 增 减

  y=f[g(x)] 增 减 减 增

  注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

  2.函数的奇偶性

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

  注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

  2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的.一个自变量(即定义域关于原点对称).

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  总结:利用定义判断函数奇偶性的格式步骤:

  1 首先确定函数的定义域,并判断其定义域是否关于原点对称;

  2 确定f(-x)与f(x)的关系;

  3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

  注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

  (1)再根据定义判定;

  (2)有时判定f(-x)=f(x)比较困难,可考虑根据是否有f(-x)f(x)=0或f(x)/f(-x)=1来判定;

  (3)利用定理,或借助函数的图象判定 .

【高一数学基本性质知识点归纳】相关文章:

高一数学函数的基本性质知识点02-24

高中数学不等式的基本性质知识点归纳03-06

高一数学不等式的基本性质的知识点01-11

列举高一数学函数的基本性质知识点02-24

圆的基本性质数学知识点04-02

初三数学抛物线的性质知识点归纳05-27

高一数学集合知识点归纳02-18

高一关于集合间的基本关系的数学知识点归纳11-13

初二数学《轴对称的基本性质》的知识点01-27