数学思想方法的重要性

时间:2023-03-22 10:26:15 赛赛 数学 我要投稿
  • 相关推荐

数学思想方法的重要性

  成功的教学不仅教会学生知识,而且要教会学生学习,即,不仅要学生“学会”,而且要学生会学,要学生会独立、主动地去获取已有知识。下面是小编带来的是数学思想方法的重要性,希望对您有帮助。

数学思想方法的重要性

  中学阶段是一个人一生中非常重要的学习阶段。在数学教育方面,教师不应仅做知识的呈现者,更应该重视思想方法的教学,使学生在掌握数学基础知识的同时,初步形成数学的思维策略。

  一、初中数学思想方法教学的重要性

  长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程中的数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识[1]。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。

  二、初中数学思想方法的主要内容

  初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。

  (一)转化的思想方法

  转化的思想方法就是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法。如化繁为简、化难为易,化未知为已知等,它是解决问题的一种最基本的思想方法。具体说来,代数式中加法与减法的转化,乘法与除法的转化,换元法解方程,几何中添加辅助线等等,都体现出转化的思想方法。

  (二)数形结合的思想方法

  数学是研究现实世界空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。“数”就是代数式、函数、不等式等表达式,“形”就是图形、图象、曲线等。数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。“数无形时不直观,形无数时难入微。”数形结合是研究数学问题的重要思想方法[2]。初中数学中,通过数轴,将数与点对应,通过直角坐标系,将函数与图象对应,用数形结合的思想方法学习了相反数的概念、绝对值的概念,有理数大小比较的法则,研究了函数的性质等,通过形象思维过渡到抽象思维,大大减轻了学习的难度。

  (三)分类讨论的思想方法

  分类讨论的思想方法就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。初中数学从整体上看分为代数、几何两大类,采用不同方法进行研究,就是分类思想的体现。具体来说,实数的分类,方程的分类、三角形的分类,函数的分类等,都是分类思想的具体体现。

  三、初中数学思想方法的教学规律

  数学思想方法蕴含于数学知识之中,又相对超脱于某一个具体的数学知识之外。数学思想方法的教学比单纯的数学知识教学困难得多。因为数学思想方法是具体数学知识的本质和内在联系的反映,具有一定的抽象性和概括性,它强调的是一种意识和观念。对于初中学生来说,这个年龄段正是由形象思维向抽象的逻辑思维过渡的阶段,虽然初步具有了简单的逻辑思维能力,但是还缺乏主动性和能动性。因此,在数学教学活动中,必须注意数学思想方法的教学规律。

  (一)深入钻研教材,将数学思想方法化隐为显

  首先,教师在备课时,要从数学思想方法的高度深入钻研教材,数学思想方法既是数学教学设计的核心,同时又是数学教材组织的基础和起点。通过对概念、公式、定理的研究,对例题、练习的探讨,挖掘有关的数学思想方法,了然于胸,将它们由深层次的潜形态转变为显形态,由对它们的朦胧感受转变为明晰、理解和掌握。一方面要明确在每一个具体的数学知识的教学中可以进行哪些思想方法的教学;另一方面,又要明确每一个数学思想方法,可以在哪些知识点中进行渗透。只有在这种前提下,才能加强针对性,有意识地引导学生领悟数学思想方法。

  (二)学生主动参与教学,循序渐进形成数学思想方法课堂教学活动中,倡导学生主动参与,重视知识形成的过程,在过程中渗透数学思想方法。

  概念教学中,不要简单地给出定义,要尽可能完整地再现形成定义之前的分析、综合、比较和概括等思维过程,揭示隐藏其中的思想方法。

  定理公式教学中,不要过早地给出结论。要引导学生亲自体验结论的探索、发现和推导过程,弄清每个结论的因果关系,体会其中的思想方法。

  在掌握重点,突破难点的教学活动中,要反复向学生渗透数学思想方法。数学教学中的重点,往往就是需要有意识地揭示或运用数学思想方法之处;数学教材中的难点,往往与数学思想方法的更新交替、综合运用,或跳跃性大等有关。因此,在教学活动中,要适度点拨或明确归纳出所涉及到的数学思想方法。

  在单元复习课堂上,要画龙点晴强调数学思想方法,并且可以进一步对经常用到的某种数学思想方法进行强化,对它的名称、内容、规律、应用等进行总结概括,使学生逐步掌握它的精神实质。

  数学思想方法是数学知识的精髓,是解决数学问题和其它问题的金钥匙,热切希望每个学生都能拥有这把金钥匙,成为祖国未来的栋梁。

  如何体现数学思想方法的重要性

  一、注重引导,抓住学习关键

  数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过N多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有N步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是呆看,简单的能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了N多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律。

  二、要正确处理本课程的自身逻辑系统与相关课程的关系

  初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。

  如数与初等数论中的相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。

  三、变被动式学习为主动式学习

  1.知识系统的探究

  初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂课的锲子,留待后面逐个解决。这些问题将整个教学内容串起来,起到提纲挚领的作用,使学生明确学习目标,集中学习资源(如本课程及相关课程的教村及参考书)有针对性地去探究问题,然后教师组织学生对探究的结果进行归纳整理,形成较完整的知识体系。当然一个问题的解诀并非探究的终结,在探究过程中教师与学生都可以提出一些新问题,延续学生探究的热情,在合作交流的民主和谐的氛围里,尽可能地让学生走向自由探究。

  2.解题方法的探究

  从学生的认知角度未说,解题过程是独立的发现、探索与积极思考的过程,这种探索过程中所形成的意识和思维,就是真正的创造与发现。应该说,解题教学是中学数学教学的主要任务之一,设置初数研究课程的目的之一,就是结合中学实际对解题作专门的训练。

  3.条件与结论的探究

  对一个问题的条件或结论进行探究是对问题深入研究的重要组成部分,也是初数研究课程中具有挑战性的任务之一,引导学生从不同角度、不同层面来看问题,对学生的发散思维及创造思维的培养,都能起到良好的推动作用。

  随着教学改革的深化,教学思想方法不仅要在理论上做研究探讨,更重要的是需要在实践中不断地创造与完善,才能使教学取得较好的效果。

  初中阶段应渗透的主要数学思想方法

  在初中数学教学中至少应该向学生渗透如下几种主要的数学思想方法:

  1.分类讨论的思想方法

  分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是一个重要的数学思想,又是一个重要的数学方法,能克服思维的片面性,防止漏解。

  2.类比的思想方法

  类比是根据两个或两类的对象间有部分属性相同,而推出它们某种属性也相同的推理形式,被称为最有创造性的一种思想方法。

  3.数形结合的思想方法

  数形结合的思想方法是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

  4.化归的思想方法

  所谓“化归”就是将要解决的问题转化归结为另一个较易问题或已经解决的问题。

  5.方程与函数的思想方法

  运用方程的思想方法,就是根据问题中已知量与教学法未知量之间的数量关系,运用数学的符号语言使问题转化为解方程(组)问题。

  用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,从而使问题获得解决,称为函数思想方法。

  6.整体的思想方法

  整体的思想方法就是考虑数学问题时不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观上、整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法。

【数学思想方法的重要性】相关文章:

数学思想方法06-26

小学数学数学思想方法06-27

常用的数学思想方法06-22

数学思想方法推荐06-25

数学的转化思想方法06-25

中考数学思想方法06-25

关于数学的思想方法06-25

论数学思想方法06-25

数学思想方法聚焦06-27