- 相关推荐
2025年北师大版七年级数学暑假试题及答案
在学习和工作中,我们需要用到试题的情况非常的多,试题可以帮助主办方了解考生某方面的知识或技能状况。还在为找参考试题而苦恼吗?下面是小编精心整理的2025年北师大版七年级数学暑假试题及答案,希望对大家有所帮助。

七年级数学暑假试题及答案 1
一、选择题
1、下列四个说法中,正确的是()
A、一元二次方程有实数根;
B、一元二次方程有实数根;
C、一元二次方程有实数根;
D、一元二次方程x2+4x+5=a(a≥1)有实数根。
【答案】D
2、一元二次方程有两个不相等的实数根,则满足的条件是
A、 =0 B、 >0
C、<0 D、 ≥0
【答案】B
3、(2010四川眉山)已知方程的两个解分别为、,则的值为
A、 B、 C、7 D、3
【答案】D
4、(2010浙江杭州)方程x2 + x – 1 = 0的一个根是
A、 1 – B、 C、 –1+ D、
【答案】D
5、(2010年上海)已知一元二次方程x2 + x ─ 1 = 0,下列判断正确的是()
A、该方程有两个相等的实数根B。该方程有两个不相等的实数根
C、该方程无实数根D。该方程根的情况不确定
【答案】B
6、(2010湖北武汉)若是方程=4的两根,则的值是()
A、8 B、4
C、2 D、0
【答案】D
7、(2010山东潍坊)关于x的一元二次方程x2—6x+2k=0有两个不相等的实数根,则实数k的取值范围是()。
A、k≤ B、k< C、k≥ D、k>
【答案】B
8、(2010云南楚雄)一元二次方程x2—4=0的解是()
A、x1=2,x2=—2 B、x=—2 C、x=2 D、 x1=2,x2=0
【答案】A
9、(2010云南昆明)一元二次方程的两根之积是()
A、—1 B、 —2 C、1 D、2
【答案】B
10、(2010湖北孝感)方程的估计正确的是()
A、 B、
C、 D、
【答案】B
11、(2010广西桂林)一元二次方程的解是()。
A、B、
C、D、
【答案】A
12、(2010黑龙江绥化)方程(x—5)(x—6)=x—5的解是()
A、x=5 B、x=5或x=6 C、x=7 D、x=5或x=7
【答案】D
二、填空题
1、(2010甘肃兰州)已知关于x的一元二次方程有实数根,则m的取值范围是。
【答案】
2、(2010安徽芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=__________。
【答案】—1
3、(2010江苏南通)设x1、x2是一元二次方程x2+4x—3=0的两个根,
2x1(x22+5x2—3)+a =2,则a= ▲ 。
【答案】8
4、(2010四川眉山)一元二次方程的解为___________________。
【答案】
5、(2010江苏无锡)方程的解是▲ 。
【答案】
6、(2010江苏连云港)若关于x的方程x2—mx+3=0有实数根,则m的'值可以为___________。(任意给出一个符合条件的值即可)
【答案】
7、(2010湖北荆门)如果方程ax2+2x+1=0有两个不等实数根,则实数a的取值范围是
【答案】a<1且a≠0
8、(2010湖北鄂州)已知α、β是一元二次方程x2—4x—3=0的两实数根,则代数式(α—3)(β—3)= 。
【答案】—6
9、(2010四川绵阳)若实数m满足m2— m + 1 = 0,则m4 + m—4 = 。
【答案】62
10、(2010云南玉溪)一元二次方程x2—5x+6=0的两根分别是x1,x2,则x1+x2等于
A。 5 B。 6 C。 —5 D。 —6
【答案】A
11、(2010四川自贡)关于x的一元二次方程—x2+(2m+1)x+1—m2=0无实数根,则m的取值范围是_______________。
【答案】<—
12、(2010广西钦州市)已知关于x的一元二次方程x2 +kx +1 =0有两个相等的实数根,
则k = ▲ 。
【答案】±2
13、(2010广西柳州)关于x的一元二次方程(x+3)(x—1)=0的根是_____________。
【答案】x=1或x=—3
14、(2010福建南平)写出一个有实数根的一元二次方程___________________。
【答案】答案不唯一,例如:x2—2x+1 =0
15、(2010广西河池)方程的解为。
【答案】
16、(2010湖南娄底)阅读材料:
若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:
x1+x2= —,x1x2=
根据上述材料填空:
已知x1、x2是方程x2+4x+2=0的两个实数根,则+=_________。
【答案】—2
16、(2010广西百色)方程—1的两根之和等于。
【答案】2
七年级数学暑假试题及答案 2
一、选择题
1.已知an+1=an-3,则数列{an}是()
A.递增数列 B.递减数列
C.常数列 D.摆动数列
解析:∵an+1-an=-30,由递减数列的定义知B选项正确.故选B.
答案:B
2.设an=1n+1+1n+2+1n+3++12n+1(nN*),则()
A.an+1an B.an+1=an
C.an+1
解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.
∵nN*,an+1-an0.故选C.
答案:C
3.1,0,1,0,的通项公式为()
A.2n-1 B.1+-1n2
C.1--1n2 D.n+-1n2
解析:解法1:代入验证法.
解法2:各项可变形为1+12,1-12,1+12,1-12,,偶数项为1-12,奇数项为1+12.故选C.
答案:C
4.已知数列{an}满足a1=0,an+1=an-33an+1(nN*),则a20等于()
A.0 B.-3
C.3 D.32
解析:由a2=-3,a3=3,a4=0,a5=-3,可知此数列的最小正周期为3,a20=a36+2=a2=-3,故选B.
答案:B
5.已知数列{an}的通项an=n2n2+1,则0.98()
A.是这个数列的项,且n=6
B.不是这个数列的项
C.是这个数列的项,且n=7
D.是这个数列的项,且n=7
解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故选C.
答案:C
6.若数列{an}的通项公式为an=7(34)2n-2-3(34)n-1,则数列{an}的()
A.最大项为a5,最小项为a6
B.最大项为a6,最小项为a7
C.最大项为a1,最小项为a6
D.最大项为a7,最小项为a6
解析:令t=(34)n-1,nN+,则t(0,1],且(34)2n-2=[(34)n-1]2=t2.
从而an=7t2-3t=7(t-314)2-928.
函数f(t)=7t2-3t在(0,314]上是减函数,在[314,1]上是增函数,所以a1是最大项,故选C.
答案:C
7.若数列{an}的前n项和Sn=32an-3,那么这个数列的通项公式为()
A.an=23n-1 B.an=32n
C.an=3n+3 D.an=23n
解析:
①-②得anan-1=3.
∵a1=S1=32a1-3,
a1=6,an=23n.故选D.
答案:D
8.数列{an}中,an=(-1)n+1(4n-3),其前n项和为Sn,则S22-S11等于()
A.-85 B.85
C.-65 D.65
解析:S22=1-5+9-13+17-21+-85=-44,
S11=1-5+9-13++33-37+41=21,
S22-S11=-65.
或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故选C.
答案:C
9.在数列{an}中,已知a1=1,a2=5,an+2=an+1-an,则a2007等于()
A.-4 B.-5
C.4 D.5
解析:依次算出前几项为1,5,4,-1,-5,-4,1,5,4,,发现周期为6,则a2007=a3=4.故选C.
答案:C
10.数列{an}中,an=(23)n-1[(23)n-1-1],则下列叙述正确的.是()
A.最大项为a1,最小项为a3
B.最大项为a1,最小项不存在
C.最大项不存在,最小项为a3
D.最大项为a1,最小项为a4
解析:令t=(23)n-1,则t=1,23,(23)2,且t(0,1]时,an=t(t-1),an=t(t-1)=(t-12)2-14.
故最大项为a1=0.
当n=3时,t=(23)n-1=49,a3=-2081;
当n=4时,t=(23)n-1=827,a4=-152729;
又a3
答案:A
二、填空题
11.已知数列{an}的通项公式an=
则它的前8项依次为________.
解析:将n=1,2,3,,8依次代入通项公式求出即可.
答案:1,3,13,7,15,11,17,15
12.已知数列{an}的通项公式为an=-2n2+29n+3,则{an}中的最大项是第________项.
解析:an=-2(n-294)2+8658.当n=7时,an最大.
答案:7
13.若数列{an}的前n项和公式为Sn=log3(n+1),则a5等于________.
解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.
答案:log365
14.给出下列公式:
①an=sinn
②an=0,n为偶数,-1n,n为奇数;
③an=(-1)n+1.1+-1n+12;
④an=12(-1)n+1[1-(-1)n].
其中是数列1,0,-1,0,1,0,-1,0,的通项公式的有________.(将所有正确公式的序号全填上)
解析:用列举法可得.
答案:①
三、解答题
15.求出数列1,1,2,2,3,3,的一个通项公式.
解析:此数列化为1+12,2+02,3+12,4+02,5+12,6+02,,由分子的规律知,前项组成正自然数数列,后项组成数列1,0,1,0,1,0,.
an=n+1--1n22,
即an=14[2n+1-(-1)n](nN*).
也可用分段式表示为
16.已知数列{an}的通项公式an=(-1)n12n+1,求a3,a10,a2n-1.
解析:分别用3、10、2n-1去替换通项公式中的n,得
a3=(-1)3123+1=-17,
a10=(-1)101210+1=121,
a2n-1=(-1)2n-1122n-1+1=-14n-1.
17.在数列{an}中,已知a1=3,a7=15,且{an}的通项公式是关于项数n的一次函数.
(1)求此数列的通项公式;
(2)将此数列中的偶数项全部取出并按原来的先后顺序组成一个新的数列{bn},求数列{bn}的通项公式.
解析:(1)依题意可设通项公式为an=pn+q,
得p+q=3,7p+q=15.解得p=2,q=1.
{an}的通项公式为an=2n+1.
(2)依题意bn=a2n=2(2n)+1=4n+1,
{bn}的通项公式为bn=4n+1.
18.已知an=9nn+110n(nN*),试问数列中有没有最大项?如果有,求出最大项,如果没有,说明理由.
解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,
当n7时,an+1-an
当n=8时,an+1-an=0;
当n9时,an+1-an0.
a1
故数列{an}存在最大项,最大项为a8=a9=99108.
【七年级数学暑假试题及答案】相关文章:
2017年暑假七年级数学试题及答案06-04
初二数学暑假作业试题及答案02-16
精选初中数学试题及答案12-17
数学试题和答案精选02-25
初中数学各种试题精选及答案01-09
小升初数学试题及答案04-14
初一数学暑假作业测试数学试题及答案03-04
2017七年级暑假数学作业答案04-11
数学暑假作业试题下学期答案04-29
最新七年级下册暑假数学作业试题02-23