教学设计

《植树问题》教学设计与反思

时间:2025-04-13 07:24:30 教学设计 我要投稿

《植树问题》教学设计与反思(精选13篇)

  在日常生活中,我们要有一流的课堂教学能力,反思意为自我反省。反思我们应该怎么写呢?下面是小编为大家收集的《植树问题》教学设计与反思,仅供参考,大家一起来看看吧。

《植树问题》教学设计与反思(精选13篇)

  《植树问题》教学设计与反思 篇1

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系,使学生能理解间隔数与植树棵数之间的规律,利用规律来解决简单植树的问题。

  2、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重、难点 引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

  教学过程:

  一、动手种树,初步感知

  1、创设情景,理解题意

  [出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。

  师:从这份要求上,你能获得哪些信息? (20米长的小路,一边,每隔5米种一棵)

  师:每隔5米是什么意思? (两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的间隔是5米)

  2、设计方案,动手种树

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。 用你们喜欢的图案表示树,把你们设计的方案画一画。 (小组活动)

  3、反馈交流 师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树? (5棵,4棵,3棵)

  (1)两端都栽 师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?我们先从棵数最多的说起吧!哪个小组设计的是需要5棵的?来展示一下你们的设计方案。 (小组展示、交流设计思路)

  师:你们小组的设计方案是怎样的?

  师:他们小组的设计符合要求吗?这里他们是用什么来表示树的?根据他们的设计,一共需要5棵。

  (2)只栽一端 师:哪个小组设计的是需要4棵的? 小组展示设计方案: 交流设计思路) 师:他们的设计符合要求吗?

  (3)两端都不栽 师:有的小组只要3棵就能完成要求,他们是怎样设计的呢?我们一起来看一看。 小组展示设计方案:交流设计思路) 师:他们小组的设计同样符合要求。

  (4)介绍线段图 师:刚才同学们用一条线段表示小路,用不同的图案来表示树,这些图案可以表示树,也可以表示什么?这就是线段图,在学习数学时,我们常常借助它,帮助我们从简单的问题入手,解决实际复杂问题,它对我们学习数学很有帮助。 师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  二、合作探究,总结方法

  1、总结规律 师:我们一起来回顾一下同学们设计的方案,(出示三种方案线段图),三种方案都符合设计的要求,谁能说说他们相同的地方在哪里? (生说:两棵树间的间隔都一样,他们的间隔个数都相同) 师:不同的地方又在哪里呢? (根据学生的回答师出示板书:两端都载 只栽一端 两端都不栽) 师:我们具体来看这三种方案,首先,在两端都栽的情况下,每隔5米栽一棵,也就是每5米为一个间隔,20米里有几个这样的间隔?你是怎么计算的? (生说,师板书:20&xide;5=4(个)) 师:4表示什么?(4个间隔) [结合图观察]4个间隔需要几棵树?(5棵树) (师边讲解,边完成表格)

  师:为什么4个间隔有5棵树? 一个间隔跟着一棵树,一个间隔跟着一棵树,每个间隔都跟着一棵树,有4个间隔就有4棵树,最后剩哪棵树前面没有间隔?因为它两端都栽,所以还要加上前面的一棵。(列式4+1=5(棵)) 师:刚才我们是用列式和画图的方法探究出了间隔数和棵数。 师:如果现在让同学们来种树,除了可以每隔5米种一棵,你们还想每隔几米种一棵呢? (根据学生的回答师填表格) 师:请同学们任意选择其中的一种情况,用列式或画图的方法来探究它的间隔数和所需棵数。 (学生活动后反馈交流)

  条件:两端都栽

  师:从表格中,你能发现间隔数与棵数有什么关系吗?能用一个式子表示他们之间的关系吗?(生说,师板书:间隔数+1=棵数) 2、运用规律 师:老师有问题要考你们了,知道的同学马上起立回答我,比比谁的反应快?在两端都栽的情况下,8个间隔要有几棵树?10个间隔有几棵树?6棵树有几个间隔?10棵有几个间隔? 3、探索规律 师:同学们已经发现了当“两端都栽”的时候间隔数与棵数的关系,接下来我们就一起来探究“只栽一端”和“两端都不栽”的情况。 (师出示只栽一端线段图)在只栽一端的情况下,图上有几个间隔几棵树?(4个间隔4棵树)我们一起来看一看,(结合线段图讲解)一个间隔跟着一棵树,一个间隔跟着一棵树,刚好有几个间隔就有几棵树。如果现在有6个间隔有几棵树?7个间隔有几棵树?谁能发现间隔数和棵数的关系? (学生说完后师总结规律并板书:间隔数=棵数) 师:(出示只栽一端线段图)现在还是一个间隔跟着一棵树吗?图上是几个间隔几棵树?谁能说说在两端都不栽时间隔数与棵数的关系? (生说,师板书:间隔数-1=棵数) 师:刚才我们探究了三种不同的栽法,他们有什么关系呢? 四、开放练习,应用方法 1、师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一起来看一看。(幻灯片出示有间隔的图片) 师:这些图片中的事物都存在着间隔,在数学上,我们把这类的问题统称为“植树问题”。(板书课题) 师:在生活中,常常要解决这样的植树问题,我们必须要先确定他是属于三种情况中的哪一种,我们一起来判断一下: 出示练习一: 选择下列问题所属类型: 类似植树问题:①两端都栽 ②两端都不栽 ③只栽一端 (1)、在一条全长2千米的街道两旁安装路灯,头尾都要安,每隔50米安一座。共需多少灯? (2)、5路公共汽车从起点开出,行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站? (3)、希望小学两栋教学楼之间有一条100米长的小路,为了迎接六一节,学校计划在小路的一边插上彩旗,每隔5米插一面,一共需要几面彩旗? 2、师:你们掌握了今天的知识了吗?能不能独立完成第三道题? 希望小学两栋教学楼之间有一条100米长的小路,为了迎接六一节,学校计划在小路的一边插上彩旗,每隔5米插一面,一共需要几面彩旗?如果两边都要插,一共需要几面彩旗?

  三、课堂小结,课外延伸 师:通过这节课的学习你有什么收获?

  这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。

  教学反思:

  “植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、一端栽,一端不栽、两端都不栽、封闭图形情况以及方阵问题等。

  这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节:一、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。二、以生活中植树问题的应用为研究对象,引导学生了解植树问题的'实质。三、多角度的应用练习巩固,拓展学生对植树问题的认识。反思整个教学过程,我认为这节课有以下几点做得比较好:

  1、通过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。

  2、渗透数学思想方法,培养学生数学思维能力和解决问题的能力。让学生通过观察、猜测、实验、推理与交流等活动,既学会一些解决问题的一般方法和策略又逐步形成求实态度和科学精神。

  3、注意反映数学与人类生活的密切联系。

  本节课的教学内容本来就是来自于生活,通过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,进行有目的的数学学习活动,使学生学得有趣,同时,增强了数学学习的应用价值。

  4、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

  (1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。

  (2)以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。最后还把学生熟悉的学习生活情境,如班主任上楼梯,学生自己排队做操等图片呈现出来,引导学生把这些图片中的间隔规律与植树问题中的树和段联系起来,并设计难易程度不一的综合性习题,让学生自主选择自己能解决的问题进行解答,进一步感悟数学建模的重要意义。

  这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

  《植树问题》教学设计与反思 篇2

  教学目标:

  1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的.间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

  《植树问题》教学设计与反思 篇3

  教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200 +2=202(棵)

  方法三:1000÷5=200(棵)200 +1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200 +1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4—1=3(次)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  “植树问题”说课

  “植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  本课教学分四大环节:

  一、谈话导入,明确课题

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

  2.简单验证,发现规律。

  在举简单例子画一画这个环节,安排了两个小层次:

  ①按老师要求画。

  ②学生任意画。

  通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的.感性材料,为学生顺利发现并总结规律打下了基础。

  3.应用规律,解决问题。

  ①应用规律,验证前面例题哪个答案是正确的。

  ②应用规律,解决插多少面小旗的问题。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  三、合作探究“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

  2.独立操作,探究规律。

  有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  四、回归生活,实际应用

  设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

  教学反思:

  《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。

  课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。

  本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。

  《植树问题》教学设计与反思 篇4

  【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

  【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。

  【教学目标】

  知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。

  过程与方法:主要让学生通过观察、操作、交流等活动探索新知。

  情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。

  【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

  【教学准备】课件、

  一、创设情境,揭示课题。

  1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

  学生看完视频和照片说一说有什么感受?

  治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)

  【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】

  二、引导探究,发现规律。

  (出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)

  (1)理解什么是每隔5米植一棵?下一棵怎么栽?

  (2)介绍什么是一个间隔?学生指一指每一个间隔。

  (3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)

  【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】

  ①组织反馈交流

  师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?

  可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)

  ②学生汇报其他两种植法。

  学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?

  ③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。

  【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的'主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】

  (4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)

  20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。

  【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】

  (5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。

  学生先想一想,再一起来看一看。

  重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。

  找一学生再来说一说,同桌两人说一说。

  (6)学生独立尝试借助一一对应的数学思想解决另外两种植法。

  【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】

  小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。

  (7)寻找三种不同的植法棵数与间隔数之间的关系。

  观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。

  学生汇报,教师板书。

  小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。

  【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】

  精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。

  教学反思:

  课前,我利用一根绳子按一定的间隔把小棒(当小树)捆在上面,结成一个封闭图形。课开始让学生观察封闭图形的植树问题,这时我不失时机的从一棵树那里剪开,这时学生露出了奇怪的眼神,同时我提出这属于线段上植树问题的哪一种情况,学生很快就喊出:一端种另一端不种:棵树=间隔数。课中利用形象的课件出示了生活中各种各样封闭图形的植树问题,学生轻松的获取了新知。(课始我设计的目的加深学生理解封闭图形的植树问题)

  课后,我给学生了一个问题:我班有55名学生,如果要站成一个最大的正方形方队,这个正方形方队最外层一共有几人?方队一共有几人?学生纷纷开始讨论,七嘴八舌找我讨论,我没有及时告知他们答案,而是让体育委员把学生带到操场上实际的站队,让他们自己找到了答案。

  这个单元的学习达到了我预期的效果,虽然本单元教学有点难掌握,但只要教师注意激发学生的兴趣,就能突破难点。

  《植树问题》教学设计与反思 篇5

  教学目标:

  1.认识棵数,知道什么是间隔数、。

  2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3.学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:…………….

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……………

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……………………..

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……..

  板书:100÷5=2020+1=21(棵)

  100÷5=2020+2=22(棵)

  100÷5=2020+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的`题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

  教学反思:

  在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,通过对比10个间隔与2个间隔的线段图的难易,对比画一棵树和用一个点表示一棵树的难易,让学生体会简化的思想。通过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都特别重视线段图的运用。

  当然,这节课也有许多的不足之处,列举几条:

  一、教学时间安排欠妥。有的教学内容没有来得及出示,有的内容讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情况,心中没底。

  二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的情况下,所栽的棵数比间隔数多1),可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有达到水到渠成的效果,没有把一一对应的思想与植树规律结合在一起,没有很好地突破难点。

  三、对学生评价这块显得能力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。

  四、数学课关键在于“说”,以说促思,以说引思,这样可以了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明知道应该让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学内容,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。

  总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,特别应该针对自己的不足之处,运用于实际教学之中,逐步完善、改正。希望能通过自己一点一滴的积累和改进提高自己的业务水平和调控、处理课堂生成的能力,使自己能不断进步、不断发展。

  《植树问题》教学设计与反思 篇6

  教学目标:

  1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。

  2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。

  3、透过生活的事例,初步体会“植树问题”的思想方法。

  教学难点:运用“植树问题”的解题思想解决实际问题。

  教学重点:参与探索并发现“植树问题”的解题规律。

  教学准备:练习纸、课件

  教学过程:

  一、谈话引入,揭示课题

  师:同学们,你明白我们这天要学习什么资料吗?

  生:植树问题

  师:你们是怎样明白的哦?

  好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?

  板书课题:植树问题

  出示学习目标:

  二、操作感悟,探究规律

  1、请看大屏幕:

  (1)想一想:

  那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?

  ①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!

  (2)猜一猜:

  如果告诉你每隔5米种一棵,种几棵比较适宜?

  生1:5生2:4生3:3

  (3)画一画:

  师:那么,有什么办法验证你的想法?(画图)

  哦,你能不能用简单的示意图把你的想法简单地画出来呢?

  (教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。

  2、展示、汇报

  ①选一学生的'示意图展示、汇报。

  两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ②选另一学生的示意图展示、汇报。

  只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ③选另一学生的示意图展示、汇报。

  两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  3、写算式

  师:我们刚才用图来表示的思维过程能不能用个算式来表示?

  ①只种一端:你是怎样想的呢?谁能来说一说。

  20÷5=4(段)=4(棵)

  棵数和段数一一对应。

  ②两端都种:20÷5+1=5(棵)

  20÷5表示什么?加“1”是什么意思?

  ③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)

  每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)

  20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)

  4、小组讨论:

  我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)

  5、教师引导学生总结:

  ①只种一端:棵数=段数

  ②两端都种:棵数=段数+1③两端都不种:棵数=段数—1

  那么段数(间隔数)怎样求呢?

  所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。

  6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)

  师:老师也收集了一些图片,看看那里有植树问题吗?

  (根据学生的回答教师出示课件,并说明为什么属植树问题)

  三、活学活用,解决问题

  师:我们刚才透过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?

  (一)基本练习:我能行!

  1.从头至尾栽了10棵树,那么有个间隔。

  2.一根木头长8米,每2米锯一段。一共要锯次。

  好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!

  (二)综合练习:我挑战!

  1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  ①6×36=216(米)

  ②6×(36-1)=210(米)

  ③6×(36+1)=222(米)

  2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  ①10÷5=2(米)2×8=16(分钟)

  ②5×8=40(分钟)

  ③(5-1)×8=32(分钟)

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  ①12÷1=12(个)

  ②12÷1+1=13(个)

  ③12÷1-1=11(个)

  (三)拓展练习:我智慧!

  四、再次梳理,总结提高

  这天我们学习了什么资料?你有什么收获?你有什么感受?

  教学反思:

  本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着一定的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不同、植树的要求不同、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。

  在植树问题中,植树的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可能有不同的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的植树问题中的一端栽另一端不栽的情况。

  《植树问题》教学设计与反思 篇7

  教学目标:

  一、知识与技能性:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2、能够借助学具,利用规律来解决简单植树的问题。

  3、透过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  二、过程与方法:

  1、进一步培养学生从实际问题中发现规律,应用规律解决问题的潜力。

  2、渗透建模的思想,培养学生由具体到抽象的转化思想。

  3、培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  1、透过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  2、渗透爱绿、护绿的德育教育。

  教学重、难点:

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

  教学准备:教具、学具、课件

  教学过程:

  一、创设情境,导入新知:

  (出示光头强砍树的画面)

  师:孩子们,你们喜欢光头强吗?

  生:不喜欢

  师:为什么呢?

  生:因为他乱砍树,破坏森林(让学生畅所欲言,对学生进行爱绿、护绿的德育教育)

  (出示熊大、熊二抓光头强的画面)

  师:它们也不喜欢呢!瞧、

  (出示“保护森林,熊熊有责”)

  师:其实,保护森林,不仅仅仅是熊的职责,更是——

  生:人的职责

  师:那我们就应说——

  生:“保护森林,人熊有责”

  师:这天,就让我们跟熊大、熊二一齐来植树吧!

  二、建模探究,总结方法

  1、探究“两端都植”的状况

  出示:熊大、熊二要在小路的一侧植树(两端都植)

  引导孩子们认识“一侧”“两端都植”。

  在教具上,引导孩子们理解并板书“总长”“间隔长”“间隔数”和“棵数”。

  游戏:小组植树比赛

  师:听我口令,看哪个小组行动最快!

  师:两端都植,间隔长为5厘米时,间隔数和棵数分别是多少?

  师:间隔长为10厘米呢?15厘米呢?

  师:休息会儿,看看总长、间隔长、间隔数和棵数它们之间有什么关系呢?

  引导孩子,发现规律:总长÷间隔长=间隔数

  间隔数+1=棵树(强调“两端都植”)

  出示练习巩固:熊大、熊二要在长100米小路的`一侧,每隔5米栽一棵树(两端要植),需要多少棵树呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  100÷5=20(个)

  20+1=21(棵)

  2、探究“一端植”的状况

  师:突然,发现路的一端是光头强家呢!(引导学生说“只能植一端”)

  师:也是这个规律吗?赶紧在你的60厘米小路的最左端安上光头强家,填一填学生报告表格一,并填出你们的发现。

  (小组内分工合作:栽树、填表)

  学生汇报:总长÷间隔长=间隔数

  间隔数=棵树(强调“一端植”)

  出示练习:熊大、熊二在长100米的小路的一侧栽树,每隔5米植一棵树,(一端是光头强家),需要多少棵树呢?(那两侧呢?)

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸二中

  100÷5=20;(20×2=40)

  3、探究“两端不植”的状况

  师:这时,又发现路的另一端是吉吉国王的猴山呢!

  (引导学生说“两端都不植”)

  师:那到底需要多少棵树呢?请用你喜欢的方式表示出来吧!

  学生汇报:总长÷间隔长=间隔数

  间隔数-1=棵数(强调“两端不栽”)

  出示练习:熊大、熊二在小路的一侧植树,每隔5米植一棵树,总共植了20棵(一端是光头强家,另一端是吉吉国王家),这条路多长呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  (20+1)×5=105(米)

  师:熊大、熊二就这样一条路一条路的植树,有一天它们又想在一个圆形的池塘身旁植树。

  出示:熊大熊二要在圆形池塘周围植树。池塘的周长是120米,如果每隔10米植一棵,需要多少棵树呢?(引起孩子们思考)

  师:这种状况,又会是什么状况呢?我们下节课之后研究。

  师:这就是我们这天研究的不同状况的植树问题。(板书课题:植树问题)

  三、开放练习,应用方法。

  师:其实,生活中有很多跟植树问题类似的问题呢,比如xxx(引导孩子来说)

  马路问题、楼梯问题、钟表问题、公交站问题、队列问题、锯木头问题,

  四、小结:

  出示:“完美生活,从我做起”(播放欢快音乐)

  师:同学们,说说你们的收获吧!

  教学反思:

  植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  《植树问题》教学设计与反思 篇8

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、透过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的潜力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、透过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:理解“间距数+1=棵数,棵数-1=间距数”

  教学准备:课件

  教学过程:

  一、创设原型

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着搞笑的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的`“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、根据生活实景信息回答问题。

  (1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

  (2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

  (3)河边的护栏有5根铁链,需要几根柱子?(6根)

  4、引入课题

  师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

  二、构建模型

  1、用图象语言描述“植树棵数与间隔数”之间的关系。

  师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

  2、构建植树问题的数学模型

  (1)我们一齐来看一下这几位同学画的图,你能说说你是怎样画的吗?

  (2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是阿,用线段图的方法最简便,因此它也是我们最常用的。)

  (3)透过画图,我们发现这条路的两端都栽了树,这就是我们这天研究的植树问题的一种类型。(板书:两端都栽)

  (4)在线段图上,我们用点表示栽的树,几个点就是几棵树,透过画图,我们明白6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

  植树棵数间隔数67

  (板书:棵数-1=间隔数间隔数+1=棵数)

  师:这天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

  三、利用模型解决问题

  1、教学例1

  师:此刻老师要考考你们了,谁敢理解检查?既然大家都想来,那么我们一齐来。

  课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)谁能大声清楚朗读这个题目?

  (2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

  (3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

  (3)这题也能够用画线段图的方法来解答,你能试着画线段图吗?

  (4)展示学生线段图,你能说说你是怎样画的吗?

  (5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你能够了解些什么信息?谁也明白了也想来说给大家听一听的?

  (6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

  (7)汇报:说说你的想法。

  ①出示学生各种答案,板书在黑板上。

  ②对于这几种方法,你们有什么看法吗?(生:我认为……)

  ③擦去错误答案,留下正确答案:100÷5=10(个)10+1=11(棵)

  ④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

  ⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

  2、试一试

  师:如果老师把题目改一改,看看谁还会?

  课件出示:“六一”儿童节快到了,校园决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

  (1)生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2)和刚才这题比较,你想说什么?

  (3)学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利透过检查!你们还想理解新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们就应先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

  教学反思:

  学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。

  《植树问题》教学设计与反思 篇9

  教学目标:

  (1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

  (2)体验复杂问题简单化的快乐。

  教学重点:应用植树问题的模型解决相关的实际问题。

  教学难点:理解棵树与间隔数之间的关系。

  教学准备:课件

  教学过程:(如下文)。

  一、课前谈话

  1.手指游戏

  师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

  [设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

  2.导入课题

  师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)

  二、动手种树,初步感知

  1.创设情境,提出问题

  (1)课件出示例1

  同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  (2)理解题意

  ①指名读题,从中你了解哪些信息?

  ②理解“两端”是什么意思?

  (3)讨论交流

  师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

  全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

  100÷5=20(段)20+1=21(棵)(板书)

  2.简单验证,发现规律

  师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

  课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

  问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

  20+1=21(棵)20段为什么不是20棵,而是21棵呢?

  我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的'棵树=间隔数+1

  透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

  师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

  间隔数(段数)=全长÷段长

  植树的棵数=间隔数+1

  全长=段长×段数

  [设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

  三、利用规律,解决问题

  师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。

  ①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

  ②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

  ③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

  师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  [设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

  四、再次探究,构建模型

  1.创设情境,激趣导入

  师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

  2.设计方案,动手操作

  师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

  (生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

  3.反馈交流

  师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

  师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

  生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

  生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

  生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

  4.师小结

  同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

  五、精彩回放,画龙点睛

  1.用手势表达植树问题的模型并考察同桌的掌握状况。

  2.透过这节课的学习,你们有什么收获?

  六、穿越时空,展望未来

  有20棵树,若每行4棵,问怎样种植,才能使行数更多?

  七、板书设计

  植树问题:

  两端都种:棵数=间隔数+1

  100÷5=20(个)……(间隔数)

  20+1=21(棵)……(棵数)

  10-1=9(个)……(间隔数)

  9+1=10(棵)……(棵数)

  教学反思:

  植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

  (1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。

  (2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔2004年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。

  这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

  《植树问题》教学设计与反思 篇10

  学情分析:

  四年级的学生以形象思维为主,而且抽象逻辑思维潜力也有了初步的发展,具备了必须的分析综合、抽象概括、归类梳理的数学活动经验。

  教材分析:

  “植树问题”原本属于经典的奥数教学资料,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。透过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  这个数学资料既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的状况,让学生先透过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。

  设计理念:

  《新课标》提出:“学生透过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生透过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。

  教学资料:

  人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

  教学目标:

  知识与技能:

  1、理解间隔概念,明白间隔数与棵树之间的关系,初步建构植树问题的数学模型。

  2、能根据数模解决简单的实际问题,培养学生观察、分析及推理潜力。

  数学思考:

  1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  解决问题:

  能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。

  情感态度与价值观:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的`潜力。

  教学重点:会应用植树问题的规律解决一些相关的实际问题。

  教学难点:建构数模,探寻规律。

  教学准备:课件、实物投影仪、每组一张表格

  教学流程:

  一、创设情景,导入新课。

  1、猜谜语

  师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你明白在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

  “此刻看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

  2、找间隔

  “生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

  “我们的身边还有间隔吗,一齐来找找吧!”

  3、揭示课题

  出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样秀丽的环境呢?”

  “对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家明白吗?在我们数学王国里植树但是有必须的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

  二、自主探究,构建模型

  师:“春天到了,为了美化校园,我们校园也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

  1、设计不同方案

  师:“画一条线段表示12米的小路,你想怎样载就用示意图或线段图画出来吧!”教师巡视。

  2、展示不同方案

  投影仪展示学生的设计方案,问:“你是怎样画的?”

  师板书三种状况,分别是:两端都栽,只栽一端,两端都不栽。

  师:“这天这节课我们先来探讨两端都栽的状况。”

  3、小组探索、加强体验

  (1)提出问题

  出示例1(课件9)学生默读题目,找出关键词并做解释。

  师:“需要多少棵树苗呢?”指名说出不同的答案并板书。

  师:“此刻出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

  (2)验证猜想

  演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想明白吗?就是将复杂问题简单化,在那里100米太长了,我们能够先在短距离的路上种种看。”(出示课件10)

  分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

  (3)总结规律

  小组内填写表格,观察:“你发现了什么规律?”板书规律

  “刚才透过画图明白了棵数,能不能透过计算得到呢?”

  师:“根据刚才发现的规律你明白例1的答案了吗?会列式计算吗?”(出示课件11)

  4、运用规律

  (1)此刻我们的小手的5个手指看成5棵树,你能说说这天发现的规律吗?同桌相互说一说。

  (2)出示课件12“比一比谁的反应快”在两端都栽的状况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

  三、巩固应用,内化提高

  师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

  1、公共汽车上(出示课件13)

  2、公路上(出示课件14)

  3、上楼梯(出示课件15)

  4、钟表上(出示课件16)

  引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

  四、回顾整理,反思提升

  师:透过这天的学习,你有什么收获?

  “对!这天你们发现了植树问题中的重要规律,我们是怎样得到的?”“你还学到了什么方法?”(复杂问题简单化)

  “收获方法比收获知识更重要,祝贺大家!”

  板书设计:

  植树问题

  两端都栽

  棵数=间隔数+1

  间隔数=路长÷间距

  路长=间隔数×间距

  100÷5+1=21(棵)

  教学反思:

  数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。

  《植树问题》教学设计与反思 篇11

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一、创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)

  透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

  2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二、新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的用心性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:

  这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的'

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学反思:

  本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

  《植树问题》教学设计与反思 篇12

  教学目标:

  1.使孩子透过生活中的事例,初步体会解决植树问题的方法。

  2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。

  3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的.关系。

  教具准备:多媒体课件。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的主人,老师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  透过这节课的学习,我们要解决哪些问题呢?

  1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2.能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。

  ②透过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③此刻你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2.孩子自学探讨。(师巡视)

  3.班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1.做一做:118页孩子独立完成。订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

  2.122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共能够种多少棵树?

  2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  孩子完成后师批阅订正,发现问题及时解决。

  六、总结延伸:

  这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。

  教学反思:

  在这节课的教学中,我不但注重了学生动手操作潜力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既搞笑味性又贴近学生的生活。

  《植树问题》教学设计与反思 篇13

  教学内容:

  人教版小学数学五年级上册第106页例1。

  教学目标:

  1、知识与技能目标:

  (1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

  (2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

  2、过程与方法目标:

  (1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

  (2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

  (3)、培养学生的合作意识,养成良好的交流习惯。

  3、情感态度与价值观目标:

  (1)、感受数学在生活中的广泛应用。

  (2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

  教学重点:

  通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

  教学过程:

  一、谜语导入。

  (1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

  谁能很快说出谜底?(生口答)。

  师:你思维真敏捷。

  (2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

  (3)、认识间隔、间隔数。

  (预设1:数字5,5个手指;数字4,4个手指缝。)

  师:你观察得真认真!

  师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

  (预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

  师:你懂得真多,能告诉大家什么叫做间隔吗?

  生口答,师出示手的图片,板书“间隔”和“间隔数”。)

  (4)、认识生活中的“间隔”。

  师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

  师:想一想,生活中还有哪些地方有间隔?

  生充分交流

  (5)、揭示并板书课题。

  师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

  二、合作探索,了解三种植树方法

  1、直接出示题目:

  在一条长20m的小路一边植树,每隔5m栽一棵。可以怎样栽?

  师:我们可以用一条线段来表示小路的长(来时在黑板上画出线段),用这个(三角形加一竖,写在副板书上)来表示树,请大家来设计设计,看看哪个小组最能干?

  2、小组交流。

  师:请同学们以小组为单位,按照合作要求,完成方案。(出示合作要求) 合作要求

  (1)小组内猜一猜:可以栽几棵树? (2)自己独立动手画一画;

  (3)小组内说一说:你是怎样画的?

  3、汇报。

  师:谁来说一说,你栽了几棵树?谁还有不同的答案?

  (2)师:哦,看来同学们有的栽了4棵,有的栽了5棵,还有的`同学栽了3棵,咱就先请栽了5棵的同学来说说,你是怎么栽的?(追问:跟同学们详细的说一说,你是怎样画的?)

  有哪些同学是4棵的?说说你是怎样栽的?

  刚才听到有同学说栽了3棵,来说说你是怎样栽的? (学生评价)师:你觉得他们说的怎样?

  4、三种植树方法的命名。

  师:(指着第一种)像这种,在路的起点和终点都栽了树那我们就可以把它叫做“两端都栽”(板书),那像这种了,头栽尾不栽,或者尾栽头不栽,可以叫做——( 只栽一端 ),这种呢?(两端都不栽)

  1、出示题目信息:一条新修的公路,全长100米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

  2、理解题意。

  (1)、从题目中你得到了哪些数学信息?

  (2)、理解题意。

  师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

  题目中,“两端都栽”是什么意思?

  师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

  (3)、同学们大胆猜测一下,一共要栽多少棵?

  (指名生答)

  (4)、提出验证。

  a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

  b:生尝试寻求方法。

  生:可以画一画图。

  师:你的想法非常好,可以用一条线段代表100米长的公路,画一画图,数一数实际种了多少棵。)

  (5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

  师:现在栽了多少米了?就这样一直栽到100米处吗?

  (预设生:太麻烦了,浪费时间)

  (6)寻求“化繁为简”的数学方法。

  师:老师和你们有同感。100米的路太长了,你觉得路的总长要是多少米好了?

  生尝试发表自己的想法。

  (预设生:50米、20米、10米

  师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

  师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,100米太长了,我们可以转化成15米栽几棵、25米栽几颗?从而找出规律。

  师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

  (预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

  师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

  (二)、自主探究。

  (1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

  (2)、生独立填表。

  (3)、汇报交流:谁把你的结果向大家展示一下?

  (师:谁和他的结果一样请举手?

  师:看来大家都做得非常认真!)

  师:为了便于大家观察,我把表格展示在大屏幕上。

  (4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

  间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

  那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

  (5)、学生独立思考,充分交流。

  结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

  (6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

  学生口述答案。

  师:你真了不起!

  (三)、应用规律,解决问题。

  (1)、出示前面的例题。

  师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

  (2)、生找出正确解法。

  (3)师:20表示什么意思?为什么要加1?(20表示间隔数,因为间隔数加一等于棵树,所以要加一。)

  (师:你讲得太棒了!老师真心佩服你!)

  (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。那么现在就请运用我们所学的知识到知识城堡一展身手吧。看哪位同学是数学闯关达人!

  三、学以致用。

  1.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? (课件配图片出示)

  生独立审题,尝试在练习本上独立完成。

  师提醒学生注意这里的棵树是多少?6米是什么意思?让我们解决的是什么问题?

  2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  生独立审题,尝试在练习本上独立完成。

  这道题180米表示的什么意思?6米又代表什么呢?让解决的是什么问题?如何列式计算?

  3.钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

  (课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

  指名读题,理解题意。

  师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

  (学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

  大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

  汇报交流,说出思路。

  四、全课总结。通过今天的学习,你有什么收获?

  生充分交流。

  师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?那么这道提留给大家!我们将在下次课的学习中继续探究。

  拓展延伸:

  现在要在这条1000米长的公路的一侧安放垃圾桶(只在其中一端放或者两端都不放),每100米安放一个。一共需要多少个垃圾桶?

  教学反思:

  抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。

【《植树问题》教学设计与反思】相关文章:

《植树问题》教学设计及反思02-13

《植树问题》教学设计03-26

植树问题教学设计04-15

数学《植树问题》教学设计05-23

关于植树问题的教学设计06-03

215关于植树问题教学设计05-31

植树问题教学设计(精选18篇)03-06

2016小学植树问题教学反思05-30

《植树问题》教学设计(通用15篇)03-28