初中数学说课稿

时间:2025-05-19 07:33:09 说课稿 我要投稿

初中数学说课稿

  作为一位杰出的老师,可能需要进行说课稿编写工作,说课稿有利于教学水平的提高,有助于教研活动的开展。那么什么样的说课稿才是好的呢?下面是小编收集整理的初中数学说课稿,欢迎阅读与收藏。

初中数学说课稿

初中数学说课稿1

  一、教材分析

  圆柱的认识是全日制聋校实验教材第十五册第二单元的内容。圆柱是一种比较常见的几何立体图形,这部分内容包括圆柱的特征,圆柱各部分的名称和圆柱侧面展开图。教学这部分内容,有利于发展学生的空间观念,为进一步学习圆柱的侧面积,表面积,体积和解决实际问题打好基础。

  二、学情分析

  由于聋校八年级学生已经初步具备了一定的自学能力,能够根据具体情况,在已有认知的基础上进行相互探讨,所以我在本课采用让学生动手操作、自主学习、合作探究等方法来获取新知识。并利用多媒体课件来突破本课的重、难点,同时针对聋生听力受损,语言发展相对滞后的特点,在课堂上注重了聋生语言的培养,采用双语教学,鼓励聋生自主发言,发展聋生的语言。

  三、教学目标

  1、知识与技能目标

  使学生知道圆柱各部分的名称,理解圆柱的侧面展开图,掌握圆柱的特征。

  2、过程与方法目标

  通过观察、想象、操作、讨论等活动,培养学生自主探究、动手实践、合作创新的能力;同时渗透转化的思想。

  3、情感态度价值观目标

  运用课件提供的教学情境,使学生能直观感受圆柱的侧面展开图,初步渗透事物发展、变化规律的辩证观点。并使学生切实感受到数学与自己的生活息息相关,体验到学习数学的价值。

  教学重点:掌握圆柱的特征。

  教学难点:理解圆柱侧面展开图的特点。

  四、教学内容与过程

  本课我采用了实践操作法、课件演示法、小组讨论式教学法等相关的教法。教师只是以组织者,引导者与合的身份,引导学生主动参与到整个学习过程中去,在互动的过程中充分地激起学生的探究热情。因此我精心设计了以下几个环节。

  (一)创设情境,激趣导入

  1、打开多媒体课件,出示圆柱的实物模型。同时感知生活中的一些具体实物,让学生明白数学于生活。

  (通过以上教学,让学生初步接触圆柱,从生活实际感知圆柱,感受数学同生活息息相关。同时很巧妙自然的引入了课题,为学习新课做好铺垫。)

  (二)自主探究,了解圆柱

  1、学生自主学习,认识圆柱的各部分名称及特征。

  教师引导:拿出自己准备的实物,结合教材,通过看一看,摸一摸,想一想圆柱各部分的名称是什么?都有什么特征?

  2、生汇报,师订正。通过学生的语言,描述出圆柱各部分的特征,师课件演示加以验证。(课堂实录)

  (针对聋生注意力不集中的特点,我让学生自主探究,自己提供教学材料,这样能迅速激发学生的探索兴趣,为探求新知作好心理上的准备,并运用课件验证了自己的想法。对圆柱的底面、侧面和高进行了演示,让学生清晰的感知各部分的名称和特征,一目了然,更加有效地激发了学生的.观察兴趣,同时提高了学生的注意力。)

  (三)合作交流,深化感知

  1、合作探究,圆柱的侧面展开。

  (1)学生分组动手操作:把圆柱模型的侧面剪开,再展开,观察形状。

  (2)师:你是怎样剪的?展开后得到了一个什么图形?

  (3)学生操作后汇报,教师通过课件验证和补充。(课堂实录)

  (该环节是精心设计的,力求让学生成为学习的主人,通过学生的合作探究,体现学生在数学课堂上的主人意识。同时通过多媒体课件的演示,展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征。)

  2、同伴互助,寻求发现

  (1)让学生在动手操作中得到展开后长方形的长和宽与圆柱的关系。

  (2)教师课件演示展开图加以验证,轻松的突破本课的难点。(课堂实录)

  (让学生在合作中发现问题、探讨问题、解决问题,激发学生的求知欲望,同时通过形象的课件演示,轻松的分散了本课的难点,突出了本课的重点;调动了学生学习的积极性。)

  (四)巩固拓展,延伸应用

  课件出示:

  1、下面哪些物体是圆柱?

  2、指出下列圆柱的底面、侧面和高。

  3、实际测量圆柱的底面周长和高。

  (练习的设计,既有对刚刚学过的圆柱认识的运用,也有围绕易混易错之处,让学生用手势判断,使学生在宽松的氛围里,勇于发言、敢于辩论。训练说理能力的同时,学生的思维也得到训练。)

  (五)自主小结,提升理念

  师:我们初步认识了圆柱,谁

  能告诉老师,对于圆柱你都知道了什么?

  (这既是课堂小结,也是对学生的人文培养重要体现。让学生在自主发挥的同时,培养了学生的表达能力。)

  五、教育技术的应用

  信息技术作为一种教育手段,越来越多的被运用到课堂教学中,不但能创设一定的情境,而且能调动学生的积极性,更加的凸显教学效果。而flash课件更是以其演示功能强大,动画效果明显等特点被广大教师经常所应用。本课我运用了flash课件对相关的知识进行了动画演示,课件贯穿了整个课堂。上课伊始,我对圆柱的底面、侧面和高进行了课件演示,让学生清晰的感知各部分的名称和特征。让学生在开课的时候,就对本课产生一种兴趣。课中展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征,轻松的突破了难点,同时,在此基础上展示圆柱侧面展开后与展开前的关系,让学生一目了然,总之,在课堂教学中运用信息技术,能更好的完成教学目标,达到更好的教学效果。

  六、评价和反思

  课程标准中指出:既要关注学生的学习结果,又要关注学生的学习过程,更要关注他们在活动过程中所表现出来的情感与态度。本课以学生已有的生活经验为基础,让学生通过想象、描述、合作交流,从实物观察、到动手操作等多种方式来认识圆柱,并运用多媒体课件,及时有效的分散了难点,突破了重点,让学生在轻松愉悦的气氛中,扎实的掌握了所学的知识,突出“做数学”这个数学理念。也使学生在合作中共同进步,体验成功。

初中数学说课稿2

  一、地位和作用

  这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

  2、活动目标

  ①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。

  ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

  ③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

  ④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。

  总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。

  二、学情分析

  八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

  三、学法分析

  1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

  2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

  四、教法分析

  由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

  ⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。

  ⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

  教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

  1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

  2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

  3、“乐”―――本节课的设计力求做到与学生的'生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

  4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

  五、教学过程设计

  一、复习回顾

  1.一次函数的定义。

  2.一次函数的图象。

  3.直线y=kx+b与方程的联系。

  那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

  教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

  设计意图:回顾所学知识作好新知识的衔接。

  二、导探激励

  问题1:作出函数y=2x-5的图象,观察图象回答下列问题:

  (1) x取何值时,2x-5=0?

  (2) x取哪些值时, 2x-5>0?

  (3) x取哪些值时, 2x-5<0?

  (4) x取哪些值时, 2x-5>3?

  教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

  设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  学生可以用不同方法解答,教师意图是尽量用图象求解。

  问题2:用画函数图象的方法解不等式:

  -2x+3<3x-7.

  分析:

  由一次函数与一元一次不等式的关系可先将其化为一般形式,

  再画图求解;也可以将-2x+3与3x-7看作是两个

  关于x的一次函数,即y1=-2x+3,y2=3x-7。

  于是不等式的解集即对应着y1

  解法1:

  原不等式化为5x-10>0,画出直线y=5x-10如图所示,

  可以看出x>2时这条直线上的点在x轴上方,

  即这时y=5x-10>0,所以不等式的解集为x>2.

  解法2:

  将原不等式的两边分别看作是两个一次函数,

  画出直线l1∶y=-2x+3,y2=3x-7,如图所示,

  可以看出它们的交点的横坐标为2,当x>2时,

  对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2.

  三、达测深化

  做一做:

  兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题:

  (1)何时哥哥追上弟弟?

  (2)何时弟弟跑在哥哥前面?

  (3)何时哥哥跑在弟弟前面?

  (4)谁先跑过20m?谁先跑过100m?

  (5) 你是怎样求解的?与同伴交流。

  教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。

  设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。

  四、小结

  通过本节课的学习,你有哪些收获?

  五、作业 P19 读一读 P20 习题1.6

初中数学说课稿3

  一、教材分析

  ▲教材的地位和作用

  《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

  ▲学情分析

  ①说已有知识经验

  学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

  ②说学习方法和技巧

  自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

  ③说个性发展和群体提高

  新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

  ▲教材重难点

  重点:幂的乘方的推导及应用。

  难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

  二、教学目标

  新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

  ㈠知识与技能目标

  ⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。

  ⑵掌握幂乘方法则。

  ⑶会运用法则进行有关计算。

  ㈡过程与方法目标

  ⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

  ⑵体会具体到抽象再到具体、转化的数学思想。

  ㈢情感、态度与价值观

  体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教法与学法

  教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

  学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  四、教材处理

  ⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。

  ⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

  ⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

  ⑷课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

  五、教学过程

  学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:

  ①创设情境,引入课题。

  ②自主探索,展示新知。

  ③应用新知,解决问题。

  ④反馈练习,拓展思维。

  ⑤学有所思,感悟收获。

  ⑥布置作业,学以致用。

  1、创设情境,引入课题

  《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:

  问题1:同底数幂的乘法法则是怎么样的?

  问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?

  设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。

  2、自主探索,展示新知

  (1)自主探索

  出示幻灯片试一试

  请计算下列各题:①(23)2 ②(104)2 ③(104)100 ④(a3)n

  (多媒体演示时,先出现①②,再出现③,最后出现④)

  设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。

  (2)合作交流,展示成果

  计算:(am)n

  设计意图:数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的.结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。

  3、应用新知,解决问题

  (1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)

  ①(107)2 ②(b4)3 ③(am)4 ④[(x-y)3]5

  ⑤[(-2)2]10 ⑥-(y3)4 ⑦ (-y3)4

  设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。 (2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。

  (3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。

  (2)出示例2:计算下列各式

  ①(y2)3(y3)4 ②xx2x3-(x2)3+x2-x4

  ③(-2)2(-23)4 ④100010n(103)2

  设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。

  ②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的教和学生的学必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。

  (3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)

  设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。

  4、反馈练习,拓展思维

  (1)出示改错题(多媒体演示)

  下列各题计算正确吗?

  ①(x2)3+x5=x5+x5=2x5

  ②x3x6+(x3)3=x9+x9=x18

  ③x2(x4)2+x5x2=x10+x10=x20

  设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。

  (2)设计一个探究活动(多媒体演示)

  魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?

  设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。

  5、学有所思,感悟收获

  设计三个问题:

  ①通过本节课学习,你学会了哪些知识?

  ②通过本节课学习,你最深刻的体验是什么?

  ③通过本节课学习,你心里还存在什么疑惑?

  设计意图:学生畅所欲言,在以生为本的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。

  6、布置作业,学以致用

  必做题:作业本

  选做题:①已知1624326=22x-1,(102)y=1020求x+y.

  ②已知:比较2100与375的大小。

  设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。

  六、板书设计幂的乘方幂的乘方法则的

  推导过程同底幂的乘法法则

  幂的乘方法则范例板书

  学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。

  七、设计说明

  1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。

  2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是回顾反思。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现教是为了不教,学是为了会学!

初中数学说课稿4

各位评委:

  早上好

  今天我说课的题目是 《有理数》复习课 ,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算

  难点确定为:负数和有理数法则的理解和运用

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识

  2. 过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力

  3. 情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

  三、 教学方法分析 方法:分层次教学,讲授、练习相结合。

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的.解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

  3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

  学法指导

  “授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

  四、教学过程分析

  为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  1、教学环节设计

  根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:

  创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地掌握二次函数的基本知识,我设计了五个由浅入深的练习题,让每一个学生都能为下一步的探究做好准备。

  运用知识,体验成功:分层教学,让每一个学生获得成功,感受成功的喜悦

  知识深化,应用提高:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

  归纳小结,形成结构:把“反馈——调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

  (7) 当堂检测 对比反馈

  (8) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 !

  2、 作业设计

  课外作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。

  3、 板书设计(课件展示)

初中数学说课稿5

  一、 说教材

  《平移与旋转》是人教版实验教科书小学数学第四册P41-42页的教学内容,这部分内容是在学生会辨认锐角、钝角,建立了有关几何图形概念的基础上进行教学的,为今后的几何学习打下基础。图形的平移和旋转在学生的生活中并不陌生,而作为新课程新的教学内容则是学生第一次接触。因此教材从生活实例入手,在大量感知的基础上,让学生体会和发现平移与旋转的运动规律,并通过动手操作进一步理解和掌握平移的方法以及学会分辨平移和旋转。

  教学目标:

  知识与技能目标:

  1、使学生结合实例,初步感知平移、旋转现象。

  2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

  情感态度与价值观目标:能积极参与对旋转与平移现象的探究活动,感受数学与现实生活的密切联系,对身边与旋转和平移有关的某些事物产生好奇心。

  过程与方法目标:

  初步渗透了变换的数学思想方法

  教学重点是感知平移、旋转现象;学会在方格纸上平移图形

  教学难点是在方格纸上平移图形

  二、 说教法与学法

  1、实践操作法

  二年级的学生还处于形象思维阶段,建构主义学也认为,小学生学习数学是一个主动建构知识的过程,学生学习数学的过程不是被动地吸收课本上的现成结论,而是一个亲自参与的充满丰富而生动的思维活动。因此,本节课设计了让学生看一看、说一说、剪一剪等一系列的操作活动,运用多感官参与学习,解决了数学知识的抽象性与小学生思维多依赖直观这样一个矛盾,促进学生思维的不断发展。

  2、游戏教学法

  《数学课程标准》要求让学生在生动具体的情境中学习数学,因此,本教学设计注重创设图片情境,以激趣为基点,激发学生强烈的求知欲望,巩固所学新知识。教育心理学中也说游戏是儿童的本性,结合本课教学内容抽象性的特点,我以图片和游戏作为载体由浅入深地引入平移和旋转的概念。

  学法

  1、情境学习法

  《数学课程标准》要求教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决数学在现实生活中的问题,体会学习数学的重要性。因此,我让学生从身边事例中找出平移、旋转的物体,培养学生在实际生活中学数学用数学的兴趣。

  2、小组合作法

  通过合作交流培养学生能数学地进行交流,形成良好的数学素养,使学生从自己的经验出发,在合作中探索、发现和发展,使学生从被动服从向主动参与转化,从而形成师生平等、协作的课堂气氛,使教师真正成为教学活动的组织者、引导者、合作者。

  三、 说教学过程

  依据以上的教法学法,本课设计了如下四个教学环节:

  1、 实物导入,初步感知

  新课标认为学生经验是发展空间观念的基础。学生的空间知识来自丰富的现实原型,与现实生活关系非常紧密,这是他们理解和发展空间观念的宝贵资源。而且儿童的注意力有强烈的直观性和色彩性的特点,容易被生动有趣的事物所吸引,所以在开始的时候我就利用窗户和钟表揭示平移和旋转的现象。

  课伊始,我就引导学生观察窗户上窗的移动情况,让学生用自己的语言描述窗户的运动情况并让学生用手画出窗户的移动路线,形成对平移概念初步的感知。接着,我再出示钟表,让学生观察秒针的运动情况的同时让学生用手画出秒针的运动路线,形成对旋转概念的初步感知。

  2、 创设情境,感受体验

  在学生形成初步感知后,我再创设图片情境加深理解解(利用主题图及课本中的图片揭示平移、旋转现象)

  当今的建构主义者主张,世界是客观存在的,但是对于世界的理解和赋予意义却是由每个人自己决定的。我们是以自己的经验为基础来建构知识的,所以他们更关注如何以原有的经验、心理结构和信念为基础来建构知识,他们强调学习的主动性、社会性和情境性。因此,我利用学生生活中的例子创设有关平移和旋转现象的情境。

  我用幻灯机展示本单元的主题图,吸引学生的注意力,将学生带入游乐园的情境中,然后就问学生:游乐园里各种游乐项目的运动变化相同吗?(不同)你能根据他们不同的运动变化分分类吗?

  为了使学生进一步区别平移与旋转,我将为同学们提供的生活素材依次出现在屏幕上,然后让学生自己进行区分,在比较中体会平移和旋转的不同特点。

  当学生能看图区分出平移和旋转以后,我就让学生发挥想象说出身边有关平移和旋转的例子,让学生学以致用。

  3、 游戏探究,巩固新知

  著名心理学家皮亚杰说:“儿童的.思维是从动作开始的,切断动作与思维的联系,思维就得不到发展。”而且,二年级的学生的思维还处于形象阶段,只有借助多感官的参与学习才能更好的巩固所学内容。同时,在这一环节教学后进行的是本课的重难点教学,经过了前三环节的教学,许多学生已经感觉疲惫,不免注意力有所下降。在这一环节的教学中,我让学生自己动手创作平移和旋转的手工,生动有趣的活动能再次将学生的注意力吸引过来,不仅加深对所学内容的理解,而且使学生在课堂后半段时间学习更加有效。

  首先,我先和学生做一个游戏,我先点名叫一个学生做示范,让他听我口令运动。例如:我说:“某某同学向右平移两个座位,然后旋转一圈,再向左平移两个座位。”当我做完示范以后可以叫一排同学听命令,然后再全班同学一起做,这样由点到面的练习,不仅能更好地控制课堂,也可以使学生用身体来加深体会。

  接着,我让学生进行有关平移与旋转的手工制作大比拼。

  4、 情境练习,启智培能

  在这一环节的练习中,我创设小鱼找妈妈的情境,激发学生的童心,使学生积极主动的投入到在方格纸上平移物体这一重难点上。

  我出示方格纸后说:“哟,这条小鱼正着急地找它的妈妈呢。它们该怎样游,向什么方向游多少格才能碰面呢?要嘴对嘴才算碰面哦。请你们两人一组帮它们设计路线,并把路线记录下来。”

  让学生感受到了在方格纸上移动物体的乐趣后,我继续激发学生的求知欲,我再创设房子会搬家的情境,让学生都参与数一数的练习。

  在最后的时候让学生自己总结本课所学的内容,改变过去由老师总结的教学方法,让学生将所学的知识及时内化,成为自己的知识。

  四、 板书设计

  本课运用了直观比较的形式设计板书,简单直观的设计有利于学生进行比较和记忆,帮助学生了解知识的整体结构,掌握所学内容间的联系和区别。

  平移与旋转

  平移 找点→连点→移点

  旋转

  整节课的教学设计以学生为主体,在教学中紧密结合教材内容,遵循学生的认知规律和心理特征,有意识的进行发展学生思维能力的训练,让每一位学生都能体会到学习的乐趣。

初中数学说课稿6

尊敬的各位老师们:

  你们好!

  今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

  一.背景分析

  1. 教材的地位及作用

  “数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

  2. 教学重点、难点的分析

  教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

  教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

  3. 教材的处理

  1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

  2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

  3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

  4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

  二、教学目标设计

  1. 知识技能

  1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应

  2.数学思考

  1)通过观察与思考,建立数轴的概念。

  2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

  3.解决问题

  会利用数轴解决有关问题。

  4.情感态度

  通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三.课堂结构和教学媒体设计

  1.教学方法

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的'原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点:课堂教学采用了“情境—问题 —观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

  有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

  2.学法指导

  现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用设置现实的问题情景,有意义的,富有挑战性的学习内容来引起学习者的兴趣。为达到提升学生的学习兴趣,我们应强调探究学习、发现学习、研究学习、合作学习才能改变学生原来的那种“学而无思,思而无疑,有疑不问”的旧学习方式。

  要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

  学生的工具:直尺或三角板

  四.教学过程设计

  活动1创设情境引入新课

  1)观察温度计,并填空:

  ℃ ℃ ℃

  师生行为:老师演示课件,学生观察并举手发言。

  设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。

  2)课本第10页问题:在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

  师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。

  设计意图:通过学生的活动,让学生认识到:考虑东西方向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

  3)再次观察课本图1.2-1、温度计,找出它们之间的共同之处

  师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。

  设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。

  活动2学习数轴的概念

  一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数。这条直线叫做数轴。

  数轴满足以下要求:1)在直线上任取一个点表示数0,这个点叫做原点。2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。3)选取适当的长度为单位长度,直线上每隔一个单位长度取一个点。

  师生行为:老师讲解数轴的概念,说明画数轴说要满足的条件,并提醒学生数轴的三要素;学生观察、理解。

  设计意图:初步认识数轴的概念及其所需要的条件。

  活动3数轴概念的应用

  1)讨论下列数轴画得对错?并思考你认为画数轴最重要的三个因素是什么?

  ① 师生行为:学生组内讨论交流,派代表发言,老师进行总结,并概括数轴

  的三要素。

  设计意图:通过学生讨论,交流和反思,使学生认识数轴的三要素。

  2)画数轴

  画数轴的步骤:1.画直线;2.在直线上取一点作为原点;3.确定正方向,并用箭头表示4.根据需要选取适当单位长度。

  师生行为:师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

  设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

  3)在数轴上表示右边各数:0.5 +2 -0.3

  4)指出数轴上A,B,C,D各点分别表示什么数。

  解:点A表示-2;点B表示2;点C表示0;点D表示-1。

  师生行为:观看课件的题目,要求学生在自己所画的数轴上完成,再由老师演示答案。

  设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

  活动4数轴概念的深化

  填空:数轴上表示-2的点在原点的 边,距原点的距离是 , 表示3的点在原点的 边,距原点的距离是 。

  归纳:一般地,设a是一个正数,则数轴上表示数a的点在原点的 右 边,与原点的距离是 a 个单位长度;表示数-a的点在原点的 左 边,与原点的距离是 a 个单位长度。

  师生行为:通过填空,老师引导学生做出课本第12页的归纳。

  设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力

  活动5巩固数轴的概念

  课堂练习:

  1)课本第12页的练习1、2题

  2)强化练习(1)在数轴上标出到原点的距离小于3的整数。(2)在数轴上标出-5和+5之间的所有的整数。

  师生行为:学生练习,老师巡堂、指导。

  设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

  作业:课本第17页习题1.2第2题;学生用书同步训练。

  设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

  五、教学评价设计

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

  总之,在这节课上,我始终以学生为主体创设情景,激发学生的学习兴趣;、让学生主体参与,探索新知识,充分体现了以学生为主体的新理念;联系实际,数学源于生活,服务于生活,让学生轻松快乐的学习数学,才是新课程改革的最终价值取向。我相信,有了快乐,数学课堂将焕发出生命的光彩。

  谢谢大家!

初中数学说课稿7

  我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:

  一、教学设计:主要包括三个方面

  1、教材分析:

  垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。

  大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。

  2、根据以上分析,我确定本节课的教学目标是:

  知识与技能包括垂直的定义垂线的画法与性质。

  数学思考包括

  探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。

  解决问题包括

  培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。

  情感与态度包括

  让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。

  鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。

  3、教学重难点:

  教学重点:

  垂直概念的建立、垂线的.画法与性质。

  教学难点:

  用数学语言描述垂直的定义以及学生猜想能力的培养。

  二、教学过程设计:

  根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。

  1、课题导入

  课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。

  2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。

  3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。

  4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。

初中数学说课稿8

  各位评委:

  下午好!今天我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。

  一、 说教材

  (一)教材的地位与作用

  本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,这是在学习了分式基本性质、分式的约分与因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法与分式方程等知识奠定了基础。因此,本节课在整个的初中数学的学习中起着承上启下的过渡作用。

  (二)教学目标分析

  根据新课标的要求与本节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标:

  1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

  2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

  3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的'思想,使学生在学知识的同时感受探索的乐趣与成功的体验。

  (三)教学重难点

  本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点:

  教学重点:运用分式的乘除法法则进行运算。

  教学难点:分子、分母为多项式的分式乘除运算。

  下面,为了讲清重点难点,使学生能达到本节课的教学目标,我再从教法与学法上谈谈:

  二、说学情

  1.学生已经学习分式基本性质、分式的约分与因式分解,通过与分数的乘除法类比,促进知识的正迁移。

  2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化与提高,自学能力较强,通过类比学习加快知识的学习。

  三、说教法学法

  (一)说教法

  教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点与学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  (二)说学法

  从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力与活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生"学会"还要让学生"会学"

  四、说教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师与学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:

  (一)提出问题,引入课题

  俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣与求知欲。因此我用实际出发提出现实生活中的问题:

  问题1求容积的高是 ,(引出分式乘法的学习需要)。

  问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

  从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法与除法的实际需要,从而激发学生兴趣与求知欲。

  (二)类比联想,探究新知

  从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

  解后总结概括:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)

  (学生应该能说出依据的是:分数的乘法与除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

  【分式的乘除法法则 】

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

  除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。

  用式子表示为:

  设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。

  (三)例题分析,应用新知

  师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

  P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,与学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

  (四)练习巩固,培养能力

  P13练习第2题的(1)(3)(4)与第3题的(2)

  师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

  通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式与结果。

  (五)课堂小结,回扣目标

  引导学生自主进行课堂小结:

  1.本节课我们学习了哪些知识?

  2.在知识应用过程中需要注意什么?

  3.你有什么收获呢?

  师生活动:学生反思,提出疑问,集体交流。

  设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。

  (六)布置作业

  教科书习题6.2 第1、2(必做) 练习册P (选做),我设计了必做题与选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  五、说板书设计

  在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容与知识体系的理解与记忆。

初中数学说课稿9

  【教材分析】

  《代数式》是浙教版七上实验教材第四章第二节课程。本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上 “质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。

  【学生情况分析】

  在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。

  【教学目标】

  根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

  知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的。

  过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。

  【重点难点】

  教学重点:代数式的概念及用代数式表示常用的数量关系。

  教学难点:用代数式表示实际问题中的数量关系。

  【教法学法】

  根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的'认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。

  在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。

初中数学说课稿10

各位评委、老师:

  大家好!我说课的内容是人教版义务教育课程标准实验教科书八年级上册第十五章第二大节第四课单项式的乘法,下面我从教材分析、教学目的的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。

  一、教材分析

  本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。

  二、教学目的

  1. 使学生理解单项式乘法法则,会进行单项式的乘法运算 。

  2. 通过单项式乘法法则的推导,发展学生的逻辑思维能力。

  教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的.的第二条。

  三、教学重点、难点:

  重点:掌握单项式乘法法则。

  (这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)

  难点:多种运算法则的综合运用

  (这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)

  四、教学方法

  本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。

  1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。

  2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。

  3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。

  4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。

  五、教学过程

  本节课的教学过程主要包括以下五个环节:

1、 创设问题情境

2、新课学习

3、反馈练习

4、小结

5、作业布置。

  (1) 创设问题情境

  本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题

1、问题

2、的设置进而明确本节课的学习内容。

  (2) 新课学习

  新课学习包括单项式乘法法则的推导和例题讲解。

  ① 单项式乘法法则的推导

  由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。

  在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。

  ② 例题讲解

  本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。

  例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。

  在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。

  在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。

  (3) 反馈练习

  根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。

  (4) 小结

  本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。

  (5) 布置作业

  数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。

  六、教学评价、反馈措施

  本节课采用了不同的反馈手段和较多的反馈练习。

  1、设计分段练习。例如练习一-------练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。

  2、采用不同的练习方法。如口答、笔答、板演、快速强答等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈给教师,使教师对教学情况心中有数。

  3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。

  这就是我对本节课总的设计过程,具体过程将体现在我的课堂教学之中,谢谢大家!

初中数学说课稿11

各位评委、各位老师:

大家好!今天我说课的课题是八年级下册第五章第4节《数据的波动》(第一课时)。现我就教材、教法、学法、教学流序、板书五个方面进行说明。(恳请在座的各位专家、同仁批评指正。)

  一、说教材

  1.本节课的主要内容:

  探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平”相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。

  2.地位作用:

  纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的和落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。

  3.教学目标:

  依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:

  (1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。

  (2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。

  (3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

  4.重点与难点:

重点:理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。

  难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

  二、说教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:

  1.引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的.生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。

  2.比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。

  3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。

  4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度“平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

  三、说学法:

  教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:

  (1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。

  (2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。

  (3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。

  (4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。

  四、说教学程序:

  1.创设情境,导入新课:

  <1>、展示情景(链接奥运会中韩运动员设计的情景)。

  <3>、分析思考寻求解决方案(观察表格数据求平均数)。

  2、新课:

  (由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)

  <1>、概念介绍:

  <3>、引进概念

  <5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。

  <2>、P235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)

  4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。

  5、布置作业:P199(1)(2)(3-选作题):

  五.说板书设计

  板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于比较和记忆,有利于提高教学效果。

  一、根据学生的年龄特征和认知特点组织教学。

  二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问题的能力。

  三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓励学生解决问题策略的多样化。

  四、教师对教学目标,难点,重点把握要恰当、具体。

  数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。

初中数学说课稿12

  一。教材分析

  1.教材的地位和作用

  这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从同学们活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够"跳一跳,够得到".

  (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的`值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以同学们为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

初中数学说课稿13

  一、设计思想:

  数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

  处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。

  根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。

  充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。

  数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

  网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高

  二、背景分析:

  (一)学情分析:

  内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

  学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

  本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

  (二)内容分析:

  本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。

  通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。

  (三)教学方式:自学导读—同伴互助—精讲精练

  (四)教学媒体:Midea---Class纯软多媒体教学网几何画板

  三、教学目标:

  知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

  过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

  情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。

  教学重点:解分式方程的`基本思路和解法。

  教学难点:理解分式方程可能产生增根的原因。

  设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。

  四、板书设计:

  a不是分式方程的解

  (二)学习方法:类比与转化

  教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。

  五、教学过程:

  活动1:创设情境,列出方程

  设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。

  设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。

  活动2:总结定义,探究解法

  使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

  教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。

  活动3:讲练结合,分析增根

  活动4:布置作业,深化巩固(略)

初中数学说课稿14

  一、说教材

  1.说课内容:

  北师版三年级下册第二单元《对称、平移和旋转》中的第一课时的教学内容。

  2.教材的地位和作用:

  对称是一种最基本的图形变换,对于帮助学生建立空间观念,培养学生的空间想象能力有着不可忽视的作用,同时对称在自然界和日常生活中具有很重要的作用。教材结合欣赏民间艺术的剪纸图案,以及服饰、工艺品与建筑等图案,让学生感知现实世界中普遍存在的轴对称现象,让学生体会轴对称图形的特征,为今后进一步学习对称图形做准备。

  3.教学目标:

  (1)了解生活中的对称现象,体会轴对称图形的特征,能正确识别轴对称图形,能在方格纸上画出简单图形的轴对称图形。

  (2)通过观察、猜想、验证、操作,经历认识轴对称图形的过程,培养学生动手、创新等能力。

  (3)在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美,培养学生的审美情趣。

  4.教学重点:

  认识轴对称图形的基本特征。

  5.教学难点:

  制作轴对称图形。

  二、说教法

  根据本节教材内容和编排的特点,为了更有效地突出重点,突破难点,以学生的发展为本,采用了以探究发现法为主,直观演示法、设疑诱导法为辅的教学方法。教学中,精心设计带有启发性和思考性的问题,激发学生探求知识的欲望,逐步推导归纳出结论,培养学生的思维能力。

  三、说学法

  为了落实新课标的理念,在本节课的教学中体现了动手实践、自主探索与合作交流的学习方式,为了让学生充分体验到轴对称图形的特征,安排了玩一玩、折一折、剪一剪、画一画等一系列有趣的实践活动,为学生提供了充足的学习素材,创设了较宽松的学习空间,经历了知识的形成过程。

  四、说教学过程

  (一)玩对称,激趣引入

  课始,老师一句:给你一张纸,你会怎么玩?一个玩字就把学生的兴趣调动起来了,接着老师的撕纸表演,作品小衣服的亮相,更是把学生的兴趣推到了极致!你会象老师这样玩吗?话音刚落,孩子们就迫不及待地开始了折纸和撕纸。灵巧的小手把一张张白纸变成了一个个美丽的图形,争先恐后地将作品贴到黑板上。这样的`新课导入,抓住了孩子们好动爱玩的年龄特点,通过撕纸这一操作活动,让学生目之所及,手之所触,都是美丽的轴对称图形,从直观上引发出对称之美,课堂教学随之直奔学习主题。

  (二)识对称,体悟特征

  1.找特征,初识轴对称图形(作品)

  结合学生的撕纸作品,师一句:这些图形有相同的地方吗?找准了学生的认知起点,学生通过观察、比较,很快就发现了其中的奥秘:这些图形左右两边形状相同,对折后会完全重合。在此基础上我巧妙地引入轴对称图形这一概念,接着从轴字出发,引导学生认识轴对称图形的对称轴。

  2.验特征,再识轴对称图形(图片)

  出示图片,它们是轴对称图形吗?你有什么办法来验证?抓住了学生好胜的特点,学生很快就想到用对折的办法验证了自己的说法;这一环节加深了学生对轴对称图形的认识。

  3.辨特征,找出真假轴对称图形(课件)

  赏心悦目的练习面画,增强了学生思考的主动性;练习的层次性,促进了学生对知识的内化。

  (三)做对称,深化体验

  1.猜一猜:(出示轴对称图形的一半)这是什么?(学生充满自信地猜测着,猜到最后一个,打开后居然不是同学们异口同声猜出的花瓶。)在学生的惊讶中,老师趁势启发学生:想一想,花瓶的另一半形状和大小会是怎样呢?你能想办法剪出这只完整的花瓶吗?

  2.剪一剪:小组合作完成花瓶图,全班交流时着重引导学生说一说制作的方法,并给予激励性评价。

  3.画一画:你想自己做一个轴对称图形吗?全班交流时鼓励学生说出他们画图形的窍门。

  此环节的设计,旨在让学生带着知识走进实践,不着痕迹地得出了制作轴对称图形的方法,主张通过实践使学生学会运用知识,发展思维。

  (四)赏对称,提升认识

  由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的美妙与神奇,并进一步拓宽学生的视野,受到美的熏陶,感受数学与生活的紧密联系。

初中数学说课稿15

  一、教学目标

  【知识与技能】能利用方程解决实际问题。

  【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

  【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

  二、教学重难点

  重点:建立电话计费问题的方程模型。

  难点:建立电话计费问题的方程模型。

  三、教学过程

  1.导入新课

  前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

  2.对问题的初步认识

  问题1:下面表格给出的是两种移动电话的计费方式:

  你了解表格中这些数字的含义吗?

  师生活动:教师提问,学生思考,回答。

  教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

  问题2:你觉得哪种计费方式更省钱呢?

  师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

  若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;

  若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

  讨论后安排学生再次思考,可适当讨论。

  3.对问题的深入探究

  问题3:通过大家的讨论,你对电话计费问题有什么新的认识?

  师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

  若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;

  若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

  问题4:设一个月内用移动电话主叫为t min(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

  师生活动:教师提出问题,学生思考并制作表格,教师巡视。

  教师请学生填写下面的表格,其他同学适当补充。

  观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?

  师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。

  一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的`情况,教师应辅助学生加以分析。

  教师追问:

  (1)当“t大于150且小于350”时,是否存在某一主叫时间使两种方式的计费相等?为什么?

  (2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。

  (3)当主叫时间“大于150min且小于270min”或“大于270min且小于350min”时,分别选择哪种计费方式比较省钱?

  对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。

  问题5:综合以上的分析,可以发现:

  当?时,选择方式一省钱;当?时,选择方式二省钱。

  师生活动:教师提出问题,学生思考并回答。

  4.小结

  请学生回顾电话计费问题的探究过程,回答以下问题:

  (1)探究解题的过程大致可以包含哪几个步骤?

  (2)电话计费问题的核心问题是什么?

  (3)在探究过程中用到了哪些方法?你又哪些收获?

  5.巩固应用

  利用我们在“电话计费问题”中学会的方法,探究下面的问题。

  如何根据复印的页数选择复印的地点使总价比较便宜?

  师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。

  6.布置作业

  课本习题1,3。

【初中数学说课稿】相关文章:

初中数学勾股定理说课稿06-21

《相交线》初中数学说课稿10-25

初中数学说课稿15篇09-15

初中数学说课稿(15篇)08-21

初中说课稿11-11

数学说课稿10-07

《数学广角》说课稿06-14

初中物理说课稿08-13

初中地理说课稿11-14