百分网 > 教育 > 教育考试 > 高考 > 大学专业 > 《2018广东高考数学提分复习攻略》正文

2018广东高考数学提分复习攻略

百分网【大学专业】 编辑:子超 发布时间:2017-08-07 08:29:11

  在高考的考试中,学会如何为数学成绩提分有助于在高考考试中取得高分。下面百分网小编为大家整理的广东高考数学提分复习攻略,希望大家喜欢。

广东高考数学

  广东高考数学提分复习攻略

  1.如何真正学会数学:预习、复习、上课

  课前预习,你的课前预习不仅仅是看看书就好了,而应该试图自己理解这节讲什么(关键是自己理解),很简单就是你看了一遍三角函数,就合上书想想三角函数是什么?我能用它来干嘛?

  由于你课前预习了,上课时老师讲的很多东西是在加强你的印象,而且你之前的问题会一个个解开,你也会跟着老师的思路一直听下去,如果你的问题老师也没解决,ok,你碰到了个好问题!所以下课一定要第一时间解决你的疑惑,因为你一放,这个问题你估计就忘了……

  课下,你应该再读一遍这节课学习的内容,然后每个公式和定义都要自己推导一遍!!这个十分关键。

  没有量的积累,哪有质的飞越嘛!我们就是要熟练到,就算在考试中也是行云流水的算题,这都依托于平时的练题。

  2.如何刷卷子,做作业平时以及限时训练

  首先刷卷子,一定要限时做题!因为考试是限时的,你可以在平时写一套卷子用10个小时,做的十分工整……但是考试时谁会给你那么多时间呢?只有你在紧迫下适应了写题的氛围,你才能在考试中达到较好的状态!

  当然,有人好不容易花了2个小时写完一套卷子,觉得万事大吉了,其实,这错过了最好的检验和纠正自己错误的时机!你做完卷子时,一定要坐下来静心的对答案,并且标明自己的错误,警示自己。

  刚开始,你这样写一套卷子,估计会花费5,6个小时,但是你会发现,20套卷子以后,你的错误会越来越少,你的成就感也会越来越强,在考试中也会体现出来的。

  3.如何对待错题:改错、错题本用法

  有些人有些问题今天错了,下回还错,考试也错,有些错题他总也记不住!

  这是因为,他没有重视错题的价值!他的错误思维在第一次建立,并且没有被改变,一直延续了下去,所以错题是要经常看的,并且反复不断的做,错题和错题本一定要常看常新!

  有人问不知道自己的薄弱环节在哪?这个很好办,找出你的前5次考试或者前5套卷纸,看看你错的都是什么地方,OK恭喜你,你的弱点就在那里,加油补强他吧!!

  4.如何养成好习惯:细心、答题、练字

  很多人考完试都会懊悔自己没有足够细心而丢了很多分数,其实,粗心是不好的生活习惯的一种在学习上的延续,粗心的人他在生活中会有以下行为:被子基本不叠床上桌上乱糟糟、刚才拿的遥控器下一秒就不知道放哪了……这些都是生活中的细节,都表现了这个人不好的习惯:粗心、马虎、神经大条,所以这个习惯自然而然就带到了平时的学习和考试中去。

  既然说到了习惯,就在说说答题过程这个习惯的养成,在高中时我的卷子经常是展览的对象(有点不好意思……),因为老师说我的答题过程就和答案一样,这也得益于平时做作业就养成的好习惯。

  如果你的习惯已经很好了,想更加完美,这就需要卷子的“脸面”好看些,也就是字!一定要漂亮,或者退一步,一定要工整!你去看看那些高分卷纸,那个不是让你看了如沐春风呢?这个细节大家一定要加把劲,绝对会给你增色不少。

  5.如何培养数学思维:严谨、根据、自学

  有人说,我确实对数学不感兴趣,就是没有数学思维……其实不是任何人一开始都会对数学感兴趣,而是在你的不断坚持和探索中发现数学的乐趣!我坚信,兴趣是最好的老师,你特别喜欢玩魔兽,你就会千方百计的找寻通关的技巧,如果你特别喜欢数学,那么恭喜你,你的数学一定能够很棒的。要有种数学虐我千百遍,我待数学如初恋的气魄和坚守!

  数学,是一门严谨的学科,任何公式的推导,概念的定义,都有它的原因。数学教给你的不仅仅是如何算题,更是教给你一种看待任何事物的态度。

  当我们碰到任何事物都是,刚开始你对它一无所知(一道题),你开始了解它是干什么的(读题干,找条件),然后你要解决这个问题(解题),但是如果你觉得这个问题太难,肯定就要化繁求简(由已知来推导未知),最终经过一番磨难,搞定这个问题(解出一道压轴题)!从数学中,慢慢培养自己对待事物严谨的态度!

  6.如何考试:试卷分析、拿高分

  最后,我们还是回归主题,希望大家看了这个系列有所收获,能够考一个更高的分数,虽然很俗气,但是面对改变人生的高考,我们必须好好对待他,然后战胜他!

  如果你很了解考试,一般来说你应该知道试卷中试题的分步高考卷子中一定有60%的题目是基础题,这是一定的,也就是说,只要正常学习,课后题都做了,90分问题不大。(有人在这里就会鄙视课后题了……其实,课后题目是所有题目的根本,我当年高考140+时就是得益于一道课后题,高考只改了数字,我轻松做出,但是很多人在那道概率上栽了跟头)。

  高考数学圆锥复习资料

  圆锥的几何特征:

  ①底面是一个圆;

  ②母线交于圆锥的顶点;

  ③侧面展开图是一个扇形。

  如何突破圆锥曲线综合题:

  一、要熟练掌握圆锥曲线的定义、标准方程和几何性质等基础知识和基本应用。

  1.椭圆是要求掌握的内容:定义内涵及应用,过焦点三角形,正、余弦定理的使用。同学们需熟知椭圆的几何性质和常见结论。

  2.双曲线是了解的内容:一般以客观题,定义,弄清是整条,还是双曲线的一支(与椭圆类比)。

  3.抛物线:文科是了解的内容。定义的实质为“一动三定”:一个动点(设为M);一个定点F(抛物线的焦点);一条定直线l(抛物线的准线);一个定值把抛物线上的点到焦点的问题转化为抛物线上的点到准线问题。

  二、要熟练掌握解决有关圆锥曲线基本问题的通性通法。

  解析几何所研究的问题有两类:一是根据条件求圆锥曲线的方程;二是根据方程讨论曲线的几何性质。因此,在复习时要重点掌握好圆锥曲线中的一些基本问题。

  1.求圆锥曲线的标准方程:

  求圆锥曲线的标准方程常常使用定义法与待定系数法,一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”。

  2.求曲线的轨迹方程:

  文科虽不做要求,但课本中有这样问题,也是高考的热点,难度有所降低,因此必须认真对待。轨迹问题具有两个方面:一是求轨迹方程;二是由轨迹方程研究轨迹的性质。在复习时要掌握求轨迹方程的思路和方法,要学会如何将解析几何的位置关系转化为代数的数量关系进而转化为坐标关系。求轨迹方程常用的方法有定义法、直接法、代入法、参数法等。注意:①轨迹与轨迹方程的区别;②轨迹方程的纯粹性与完备性。

  三、求解圆锥曲线的性质:

  (1)基本运算.

  求解圆锥曲线的几何性质一定要先把方程化为标准形式,明确a,b,c,e,p的值,要结合图形进行分析,建立基本量之间的联系。

  (2)要掌握解决有关直线与圆锥曲线综合问题的相应解法.

  直线与圆锥曲线主要涉及:位置关系的判定、弦长、中点、最值、对称、轨迹、定点、定值、参数问题及相关的不等式与等式的证明等问题,数形结合、分类讨论、函数与方程、等价转化等数学思想方法、计算能力要求较高。

  高考数学考试复习试题

  1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:

  7527 0293 7140 9857 0347 4373 8636 6947

  1417 4698 0371 6233 2616 8045 6011 3661

  9597 7424 7610 4281

  根据以上数据估计该射击运动员射击4次至少击中3次的概率为(  )

  A.0.852

  B.0.819 2

  C.0.8

  D.0.75

  答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.

  解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.

  2.在菱形ABCD中,ABC=30°,BC=4,若在菱形ABCD内任取一点,则该点到四个顶点的距离均不小于1的概率是(  )

  A. 1/2

  B.2

  C. -1

  D.1

  答案:D 命题立意:本题主要考查几何概型,意在考查考生的运算求解能力.

  解题思路:如图,以菱形的四个顶点为圆心作半径为1的圆,图中阴影部分即为到四个顶点的距离均不小于1的区域,由几何概型的概率计算公式可知,所求概率P==.

  3.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,nN) ,若事件Cn的概率最大,则n的所有可能值为(  )

  A.3

  B.4

  C.2和5

  D.3和4

  答案:D 解题思路:分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn的概率最大,则n的所有可能值为3和4,故选D.

  4.记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为(  )

  A. 3/4

  B.1/2

  C. 1/3

  D.1/4

  答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b>0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.

 

猜你喜欢:

1.高考数学备考攻略

2.2018广东数学中考备考

3.2018年高考新政策

4.2017成人高考数学复习技巧

5.2018初中数学教学计划

6.高考激励的话语

Copyright © 2010-2017 乾程互联科技(广州)有限公司版权所有 All Rights Reserved

百分网 版权所有 粤ICP备17065803号-2

Request Error!