- 相关推荐
以数学为主题的小报素材
无论是在学习还是在工作中,大家都对手抄报很是熟悉吧,借助手抄报可以培养我们动手、动脑的习惯。那什么样的手抄报才是好的手抄报呢?下面是小编为大家收集的以数学为主题的小报素材,欢迎大家借鉴与参考,希望对大家有所帮助。

学好数学的诀窍
1、做一个个人错题集。
我给同学们一个公式:少错=多对。如果做错了题目,不管发现什么错误,不管是多么简单的错误,都收录进来;我相信,一旦你真的做起来,你就会吃惊的发现,你的错误并不是更正一次就可以改掉的,相反,有很多错误都是第二次、第三次犯了,甚至于更多次!看着自己的错体集,哎呀,太触目惊心了。这真是一个自我反省的好地方,更是一个提高成绩的好方法。复习越往后,在知识上取得突破的可能性就越小,而能纠正自己的错误,实在是一个不小的增长空间。如果你还没有这个习惯,那么,就去准备一个吧,收集自己的错误,分门别类,然后没事的时候就翻一翻,看一看,自警一番,肯定会有很大的收获。
2、参考书有一本足矣。
我想说,不要迷信参考书,参考书不要很多,有一本主要的就足够了。我发现了一个很奇怪的现象,现在市场上很多参考书卖得很好,都挂着某某名校名师的牌子,鼓吹的有多么多么好,结果,不少同学在眼花缭乱中拿了一本又一本。其实,我们在学习、复习中时间很有限,可供自己支配的时间更有限,在这些有限的时间,朝三暮四,一会儿看这一本参考书,一会儿看那一本参考书,还不如不看。把课本的知识结构知识要点烂熟于心,能够在很少的时间里把一科知识全部回顾一遍。能做到这点,要比看一些所谓“金钥匙银钥匙”的参考书要重要的多。总之,一句话,抓住最根本,最主要的,不要盲目的看参考书,特别是不要看很多参考书。
3、遇到疑难该怎么办呢?
首先是要尽可能的通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在那里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在那里。自己不能解决的时候,就可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会作了,而是,在会作之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,作题也失去了意义。
4、怎么跳出题海?
我想大家一定非常关心这个题目,题目是数学的心脏,不做题是万万不行的。而摆在我们面前的题目太多了,好像永远也做不完。试试下面的方法,第一,在完成作业的基础上分析一下每到题目都是怎么考察的,考察了什么知识点,这个知识点的考察还有没有其他的方式;第二,继续做题时,完全不必要每道题目都详细的解出来了,只要看过之后,可以归入我们上面分析过的题型,知道解题思路就可以跳过去了!这样,对每个知识点,都能把握其考试方式,这才是真正的提高。如果意识不到这一点,做一道题只是做了一道题,“就题论题”,不能跳出题外,看到本质,遇到新的题目,稍有一些不同就没有办法了,还谈什么提高呢?又怎能摆脱让你烦恼的题海呢?
5、学习中考场制胜的法宝。
首先是要摆脱心理上的恐惧,可以这样提醒自己,“害怕什么呢,不管有多难,大家都和我一样。”这样自我心理暗示一段时间之后,心里就坦然平静多了。其实学习和考试中最重要的不是要学或考的怎么怎么样,而是能把自己的水平发挥出来,这也是超水平发挥的前提。大家不妨试一试,也许效果很好呢!其次,就是要有正确的学习和考试策略,做到“宠辱不惊”,特别是,遇到难题的时候,不要紧张。考试中有这样一种现象,一旦遇到一个题目,作了好长时间还无法解决,就焦躁不安,严重影响后面的作题,进而也影响考试的成绩。我认为,遇到这种情况就应该暂时放弃这道题,接着做下去,以保证别的考题不受影响。要相信这一点:难的题目,对大家都很难,不会做并没有什么;到最后所有别的题都答完之后,再回过头来心平气和地看它,也许就做出来了。高考试卷上,总有2到3个有些难度的题目,可是我希望大家注意这样一个事实,真正让你和别人拉开距离的不是那些难题,而是那些大家努力一下都可以解决的题目。
6、正确认识考试。
其实,这里,我只是提醒大家注意一个事实而已了。那就是,如果不是竞赛,那么考试卷中,超过80%的内容都是我们在平时的学习中已经练习过的内容的翻版,也就是说,80%多的题目都是非常基础的,80%多的分值通过努力,我们每个人都是可以拿到的,如果大家不相信,可以自己去看一看是不是这样。想象看,抓住了这些基础的题目,是什么水平呢?所以每一个同学都要看到这个事实,让自己自信起来。
只对试卷结构了如指掌还是不够的,还要对每一部分的题型本身加以研究,归纳,对难度有个感性认识。前面所述,了解试卷的整体情况,就如架好了框架,而这一步,则是填充材料。在复习中,整日忙着做大量的题目,可是,归纳思考的时间呢?可以说,做再多的题目却不思考,提高的幅度是非常有限的。如果你能有意识的研究题目的类型与方法,在作每个题目的时候,不是想当然的作了出来,而是利用自己平日积累的东西,根据其类型,快速准确求解,那你就是最聪明的学生了。形象的说,不思考和思考的差别就在于:一味做题却不思考只能作自己曾经作过的题目,题目稍微一变,就会不知所措;善于归纳思考的同学,任凭题目怎么变化,都能够扎扎实实的做出来。那个更好一些呢?大家可以自己去判断。
趣味数学小故事
一家手杖店来了一个顾客,买了30元一根的手杖。他拿出一张50元的票子,要求找钱。
店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头。
顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的。店主不得已向邻居赔偿了50元。随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失。”
这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元。”
请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元。如果这个顾客行骗成功,那么共骗得了多少钱?
数学名言
1、过去关于数学无限小与无限大的许多纠缠不清的困难问题在今天的逐一解决,可能是我们这个时代必须夸耀的伟大成就之一。 ——罗素
2、无穷大是一个深不可测的海湾,所有的东西都会在其中消失。 ——马可奥勒利乌斯
3、有样东西不能证明自己,而且一旦它能够证明自己,它就不会存在,这件东西是什么?它就是无穷大! ——达芬奇
4、当我们说一个东西是无穷大的时候,这仅仅意味着我们不能感知到所指事物的终点或边界。——霍布斯
5、当研究无穷大时,“常识”是一个非常差劲的向导! ——马奥尔
6、那些无限空间里的无尽寂静使我感到恐惧。 ——帕斯卡
7、打开一扇我们可以从中向外观察无尽太空的大门。——布鲁诺
8、无穷大是一个黑暗的、无限的海洋,它没有边际。 ——弥尔顿
9、无穷大只是一个比喻,意思是指这样一个极限:当允许某些比率无限地增加时,另一些特定比率可以相应地无限逼近这个极限,要多近有多近。 ——高斯
10、无限集是一个可以与它自己的一个真子集一一对应的集。 ——康托尔
数学八大难题
前七大难题是公认的七大难题,第八难题为世界三大猜想之一。
一、P(多项式算法)问题对 NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(Stephen Cook)于1971年陈述的。
二、霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
三、庞加莱(Poincare)猜想(已经被证明)
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间)中与原点有单位距离的点的全体的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
四、黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如:2,3,5,7 等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
五、杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
六、纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶—斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
七、贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu. V. Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为:如果z(1)等于0,那么存在无限多个有理点(解);相反,如果z(1)不等于0,那么只存在有限多个这样的点。
八、哥德巴赫猜想
在1742年6月7日给欧拉的信中,哥德巴赫提出了以下猜想:(a)任一不小于6之偶数,都可以表示成两个奇质数之和;(b)任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。通常把这两个命题统称为哥德巴赫猜想。把命题“任何一个大偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和”记作“a+b”,哥氏猜想就是要证明“1+1”成立。
1966年陈景润证明了“1+2”的成立,即“任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和”。
【以数学为主题的小报素材】相关文章:
简单好看的数学手抄小报素材08-19
读书小报素材04-15
运动健康小报素材10-16
文明校园小报素材04-25
爱国小报素材08-31
法制小报内容素材02-24
安全教育小报素材04-29
关于二年级的数学小报素材10-07
清明节节日小报素材04-07
初一素材好看的读书小报04-20