物理 百文网手机站

高三物理知识点归纳

时间:2022-04-21 15:02:51 物理 我要投稿

高三物理知识点归纳(汇编15篇)

  在平凡的学习生活中,大家都没少背知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。为了帮助大家更高效的学习,以下是小编整理的高三物理知识点归纳,仅供参考,希望能够帮助到大家。

高三物理知识点归纳(汇编15篇)

高三物理知识点归纳1

  一、三种产生电荷的方式:

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

  4、电荷的基本性质:能吸引轻小物体;

  二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

  三、元电荷:一个电子所带的电荷叫元电荷,用e表示。

  1、e=1.6×10-19c;

  2、一个质子所带电荷亦等于元电荷;

  3、任何带电物体所带电荷都是元电荷的整数倍;

  四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,

  1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)

  2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)

  3、库仑力不是万有引力;

  五、电场:电场是使点电荷之间产生静电力的一种物质。

  1、只要有电荷存在,在电荷周围就一定存在电场;

  2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高三物理知识点归纳2

  (1)热现象:与温度有关的物理现象。如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。

  (2)热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。

  (3)热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。分子的大小:分子是看不见的,怎样能知道分子的大小呢?

  (4)单分子油膜法是最粗略地说明分子大小的一种方法。

  (5)利用离子显微镜测定分子的直径。

高三物理知识点归纳3

  1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流。按正弦规律变化的电动势、电流称为正弦交流电。

  2.正弦交流电----(1)函数式:e=Emsinωt(其中★Em=NBSω)

  (2)线圈平面与中性面重合时,磁通量,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势,磁通量的变化率。

  (3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=Imcosωt。

  (4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。

  3.表征交变电流的物理量

  (1)瞬时值:交流电某一时刻的值,常用e、u、i表示。

  (2)值:Em=NBSω,值Em(Um,Im)与线圈的形状,以及转动轴处于线圈平面内哪个位置无关。在考虑电容器的耐压值时,则应根据交流电的值。

  (3)有效值:交流电的有效值是根据电流的热效应来规定的。即在同一时间内,跟某一交流电能使同一电阻产生相等热量的直流电的数值,叫做该交流电的有效值。

  ①求电功、电功率以及确定保险丝的熔断电流等物理量时,要用有效值计算,有效值与值之间的关系

  E=Em/,U=Um/,I=Im/只适用于正弦交流电,其他交变电流的有效值只能根据有效值的定义来计算,切不可乱套公式。②在正弦交流电中,各种交流电器设备上标示值及交流电表上的测量值都指有效值。

  (4)周期和频率----周期T:交流电完成一次周期性变化所需的时间。在一个周期内,交流电的方向变化两次。

  频率f:交流电在1s内完成周期性变化的次数。角频率:ω=2π/T=2πf。

  4.电感、电容对交变电流的影响

  (1)电感:通直流、阻交流;通低频、阻高频。(2)电容:通交流、隔直流;通高频、阻低频。

  5.变压器:

  (1)理想变压器:工作时无功率损失(即无铜损、铁损),因此,理想变压器原副线圈电阻均不计。

  (2)★理想变压器的关系式:

  ①电压关系:U1/U2=n1/n2(变压比),即电压与匝数成正比。

  ②功率关系:P入=P出,即I1U1=I2U2+I3U3+…

  ③电流关系:I1/I2=n2/n1(变流比),即对只有一个副线圈的变压器电流跟匝数成反比。

  (3)变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制,低压线圈匝数少而通过的电流大,应当用较粗的导线绕制。

  6.电能的输送-----(1)关键:减少输电线上电能的损失:P耗=I2R线

  (2)方法:①减小输电导线的电阻,如采用电阻率小的材料;加大导线的横截面积。②提高输电电压,减小输电电流。前一方法的作用十分有限,代价较高,一般采用后一种方法。

  (3)远距离输电过程:输电导线损耗的电功率:P损=(P/U)2R线,因此,当输送的电能一定时,输电电压增大到原来的n倍,输电导线上损耗的功率就减少到原来的1/n2。

  (4)解有关远距离输电问题时,公式P损=U线I线或P损=U线2R线不常用,其原因是在一般情况下,U线不易求出,且易把U线和U总相混淆而造成错误。

高三物理知识点归纳4

  1.磁场

  (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。

  (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。

  (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。

  (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。

  (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。

  2.磁感线

  (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。

  (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。

  (3)几种典型磁场的磁感线的分布:

  ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

  ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。

  ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。

  ④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。

  3.磁感应强度

  (1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。

  (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。

  (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

  (4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

  4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

  (1)地磁场的N极在地球南极附近,S极在地球北极附近。

  (2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。

  (3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

  5★.安培力

  (1)安培力大小F=BIL。式中F、B、I要两两垂直,L是有效长度。若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度。

  (2)安培力的方向由左手定则判定。

  (3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。

  6.★洛伦兹力

  (1)洛伦兹力的大小f=qvB,条件:v⊥B。当v∥B时,f=0。

  (2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。

  (3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。

  (4)在磁场中静止的电荷不受洛伦兹力作用。

  7.★★★带电粒子在磁场中的运动规律

  在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),

  (1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动。

  (2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB

  8.带电粒子在复合场中运动

  (1)带电粒子在复合场中做直线运动

  ①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。

  ②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。

  (2)带电粒子在复合场中做曲线运动

  ①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。

  ②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解。

  ③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“”、“”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。

  物理学是研究自然界中物理现象的科学。这些现象包括力现象,声音现象,热现象,电和磁现象,光现象,原子和原子核的运动变化等现象。学习物理的主要任务就要研究这些现象,找出其中的规律,了解产生这些现象的原因,并使同学们知道和掌握,以更好地为生产和生活服务。我们知道,我们周围的世界就是由物质构成的,许多生产和生活现象都是物理现象,要学好物理,就要认真观察周围存在的各种物理现象。

高三物理知识点归纳5

  第一、二节探究自由落体运动/自由落体运动规律

  记录自由落体运动轨迹

  1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。

  2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广

  自由落体运动规律

  1.自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。g=9.8m/s?

  2.重力加速度g的方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。

  3.vt?=2gs

  竖直上抛运动

  处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)

  1.速度公式:vt=v0—gt

  位移公式:h=v0t—gt?/2

  2.上升到点时间t=v0/g,上升到点所用时间与回落到抛出点所用时间相等

  3.上升的高度:s=v0?/2g

  第三节匀变速直线运动

  匀变速直线运动规律

  1.基本公式:s=v0t+at?/2

  2.平均速度:vt=v0+at

  3.推论:

  (1)v=vt/2

  (2)S2—S1=S3—S2=S4—S3=……=△S=aT?

  (3)初速度为0的n个连续相等的时间内S之比:

  S1:S2:S3:……:Sn=1:3:5:……:(2n—1)

  (4)初速度为0的n个连续相等的位移内t之比:

  t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)

  (5)a=(Sm—Sn)/(m—n)T?(利用上各段位移,减少误差→逐差法)

  (6)vt?—v0?=2as

  第四节汽车行驶安全

  1.停车距离=反应距离(车速×反应时间)+刹车距离(匀减速)

  2.安全距离≥停车距离

  3.刹车距离的大小取决于车的初速度和路面的粗糙程度

  4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。可用图象法解题。

高三物理知识点归纳6

  一、用动量定理解释生活中的现象

  [例1]

  竖立放置的粉笔压在纸条的一端。要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。

  [解析]

  纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示。根据动量定理有:μmgt=mv。

  如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度。由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。

  如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变。粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。

  二、用动量定理解曲线运动问题

  [例2]

  以速度v0水平抛出一个质量为1kg的物体,若在抛出后5s未落地且未与其它物体相碰,求它在5s内的动量的变化。(g=10m/s2)。

  [解析]

  此题若求出末动量,再求它与初动量的矢量差,则极为繁琐。由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量。则

  Δp=Ft=mgt=1×10×5=50kg·m/s。

  [点评]

  ①运用Δp=mv-mv0求Δp时,初、末速度必须在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理Δp=Ft求解Δp。

  ②用I=F·t求冲量,F必须是恒力,若F是变力,需用动量定理I=Δp求解I。

  三、用动量定理解决打击、碰撞问题

  打击、碰撞过程中的相互作用力,一般不是恒力,用动量定理可只讨论初、末状态的动量和作用力的冲量,不必讨论每一瞬时力的大小和加速度大小问题。

  [例3]

  蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由落下,触网后沿竖直方向蹦回到离水平网面1.8m高处。已知运动员与网接触的时间为1.4s。试求网对运动员的平均冲击力。(取g=10m/s2)

  [解析]

  将运动员看成质量为m的质点,从高h1处下落,刚接触网时速度方向向下,大小。

  弹跳后到达的高度为h2,刚离网时速度方向向上,接触过程中运动员受到向下的重力mg和网对其向上的弹力F。

  选取竖直向上为正方向,由动量定理得:

  由以上三式解得:

  代入数值得:F=1.2×103N

  四、用动量定理解决连续流体的作用问题

  在日常生活和生产中,常涉及流体的连续相互作用问题,用常规的分析方法很难奏效。若构建柱体微元模型应用动量定理分析求解,则曲径通幽,“柳暗花明又一村”。

  [例4]

  有一宇宙飞船以v=10km/s在太空中飞行,突然进入一密度为ρ=1×10-7kg/m3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上。欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少?(已知飞船的正横截面积S=2m2)

  [解析]

  选在时间Δt内与飞船碰撞的微陨石尘为研究对象,其质量应等于底面积为S,高为vΔt的直柱体内微陨石尘的质量,即m=ρSvΔt,初动量为0,末动量为mv。设飞船对微陨石的作用力为F,由动量定理得,

  根据牛顿第三定律可知,微陨石对飞船的撞击力大小也等于20N。因此,飞船要保持原速度匀速飞行,助推器的推力应增大20N。

  五、动量定理的应用可扩展到全过程

  物体在不同阶段受力情况不同,各力可以先后产生冲量,运用动量定理,就不用考虑运动的细节,可“一网打尽”,干净利索。

  [例5]

  质量为m的物体静止放在足够大的水平桌面上,物体与桌面的动摩擦因数为μ,有一水平恒力F作用在物体上,使之加速前进,经t1s撤去力F后,物体减速前进直至静止,问:物体运动的总时间有多长?

  [解析]

  本题若运用牛顿定律解决则过程较为繁琐,运用动量定理则可一气呵成,一目了然。由于全过程初、末状态动量为零,对全过程运用动量定理,本题同学们可以尝试运用牛顿定律来求解,以求掌握一题多解的方法,同时比较不同方法各自的特点,这对今后的学习会有较大的帮助。

  六、动量定理的应用可扩展到物体系

  尽管系统内各物体的运动情况不同,但各物体所受冲量之和仍等于各物体总动量的变化量。

  [例6]

  质量为M的金属块和质量为m的木块通过细线连在一起,从静止开始以加速度a在水中下沉,经时间t1,细线断裂,金属块和木块分离,再经过时间t2木块停止下沉,此时金属块的速度多大?(已知此时金属块还没有碰到底面。)

  [解析]

  金属块和木块作为一个系统,整个过程系统受到重力和浮力的冲量作用,设金属块和木块的浮力分别为F浮M和F浮m,木块停止时金属块的速度为vM,取竖直向下的方向为正方向,对全过程运用动量定理。

  综上,动量定量的应用非常广泛。仔细地理解动量定理的'物理意义,潜心地探究它的典型应用,对于我们深入理解有关的知识、感悟方法,提高运用所学知识和方法分析解决实际问题的能力很有帮助。

高三物理知识点归纳7

  分子动理论是在坚实的实验基础上建立起来的。我们通过单分子油膜实验、隧道扫描显微镜观察碳原子的分布等实验,知道物质是由很小的分子组成的,分子大小在10—10m数量级。我们又通过扩散现象和布朗运动等实验知道了分子是永不停息地做无规则运动的。分子动理论还告诉我们分子之间有相互作用力。

  (1)演示实验:

  ①长玻璃管内,分别注入水和酒精,混合后总体积减小。

  ②U形管两臂内盛有一定量的水(不注满水),将右管上端用橡皮塞堵住,左管继续注入水,右管水面上的空气被压缩。

  上述实验可以说明气体、液体的内部分子之间是有空隙的。钢铁这样坚固的固体的分子之间也有空隙,有人用两万标准大气压的压强压缩钢筒内的油,发现油可以透过筒壁溢出。

  布朗运动和扩散现象不但说明分子不停地做无规则运动,同时也说明分子间有空隙,否则分子便不能运动了。

  (2)一方面分子间有空隙,另一方面,固体、液体内大量分子却能聚集在一起形成固定的形状或固定的体积,这两方面的事实,使我们推理得出分子之间一定存在着相互吸引力。

  分子之间还存在着斥力。

  固体和液体很难被压缩,即使气体压缩到了一定程度后再压缩也是很困难的;用力压缩固体(或液体、气体)时,物体内会产生反抗压缩的弹力。这些事实都是分子之间存在斥力的表现。

  运用反证法推理,如果分子之间只存在着引力,分子之间又存在着空隙,那么物体内部分子都吸引到一起,造成所有物体都是很紧密的物质。但事实并不是这样的,说明必然还有斥力存在着。

高三物理知识点归纳8

  力学知识点1、力:

  力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不同,可以把力分为

  按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

  按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:形变;改变运动状态.

  力学知识点2、重力:

  由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,

  力学知识点3、弹力:

  (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

  (2)条件:接触;形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:

  弹簧的弹力大小由F=kx计算,

  一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定.

  力学知识点4、摩擦力:

  (1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可.

  (2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反.但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度.

  2高中物理知识点总结:力学部分

  力学的基本规律之:匀变速直线运动的基本规律(12个方程);

  三力共点平衡的特点;

  牛顿运动定律(牛顿第一、第二、第三定律);

  力学的基本规律之:万有引力定律;

  天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

  力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

  动量守恒定律(四类守恒条件、方程、应用过程);

  功能基本关系(功是能量转化的量度)

  力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);

  力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);

  简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

  简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。

高三物理知识点归纳9

  [感应电动势的大小计算公式]

  1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

  2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

  3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}

  4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

  2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

  3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

  4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),

  ΔI:变化电流,t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

  注:

  1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕

  2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。

  4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

高三物理知识点归纳10

  1、物质是由分子组成的。分子若看成球型,其直径以10—10m来度量。

  2、一切物体的分子都在不停地做无规则的运动。

  ①扩散:不同物质在相互接触时,彼此进入对方的现象。

  ②扩散现象说明:

  A分子之间有间隙。

  B分子在做不停的无规则的运动。

  ③课本中的装置下面放二氧化氮这样做的目的是:防止二氧化氮扩散被误认为是重力作用的结果。实验现象:两瓶气体混合在一起颜色变得均匀,结论:气体分子在不停地运动。

  ④固、液、气都可扩散,扩散速度与温度有关。

  ⑤分子运动与物体运动要区分开:扩散、蒸发等是分子运动的结果,而飞扬的灰尘,液、气体对流是物体运动的结果。

  3、分子间有相互作用的引力和斥力。

  ①当分子间的距离d=分子间平衡距离r,引力=斥力。

  ②d

  ③d>r时,引力>斥力,引力起主要作用。固体很难被拉断,钢笔写字,胶水粘东西都是因为分子之间引力起主要作用。

  ④当d>10r时,分子之间作用力十分微弱,可忽略不计。

  破镜不能重圆的原因是:镜块间的距离远大于分子之间的作用力的作用范围,镜子不能因分子间作用力而结合在一起。

高三物理知识点归纳11

  1.力

  力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。力是矢量。

  2.重力

  (1)重力是由于地球对物体的吸引而产生的。

  [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。

  但在地球表面附近,可以认为重力近似等于万有引力

  (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g

  (3)重力的方向:竖直向下(不一定指向地心)。

  (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。

  3.弹力

  (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。

  (2)产生条件:①直接接触;②有弹性形变。

  (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;

  在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。

  ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。

  ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。

  (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。

  ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx。k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m。

高三物理知识点归纳12

  光子说

  ⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量。

  ⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。

  光的波粒二象性

  光既表现出波动性,又表现出粒子性。大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强。

  实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满足下列关系:

  从光子的概念上看,光波是一种概率波.

  电子的发现和汤姆生的原子模型:

  ⑴电子的发现:

  1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。

  电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

  ⑵汤姆生的原子模型:

  1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

  氢原子光谱

  氢原子是最简单的原子,其光谱也最简单。

  1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:

  式中R叫做里德伯常量,这个公式成为巴尔末公式。

  除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。

  氢原子光谱是线状谱,具有分立特征,用经典的电磁理论无法解释。

高三物理知识点归纳13

  1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

  a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态。

  b.力是该变物体速度的原因。

  c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

  d力是产生加速度的原因。

  2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

  a.一切物体都有惯性。

  b.惯性的大小由物体的质量决定。

  c.惯性是描述物体运动状态改变难易的物理量。

  3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

  a.数学表达式:a=F合/m。

  b.加速度随力的产生而产生、变化而变化、消失而消失。

  c.当物体所受力的方向和运动方向一致时,物体加速。当物体所受力的方向和运动方向相反时,物体减速。

  d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N。

  4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的。

  a.作用力和反作用力同时产生、同时变化、同时消失。

  b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。

高三物理知识点归纳14

  1.分子动理论

  (1)物质是由大量分子组成的分子直径的数量级一般是10-10m。

  (2)分子永不停息地做无规则热运动。

  ①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

  (3)分子间存在着相互作用力

  分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。

  2.物体的内能

  (1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。

  (2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

  (3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。

  (4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。

  3.改变内能的两种方式

  (1)做功:其本质是其他形式的能和内能之间的相互转化。(2)热传递:其本质是物体间内能的转移。

  (3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。

  4.★能量转化和守恒定律

  5★.热力学第一定律

  (1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。

  (2)表达式:W+Q=ΔU

  (3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。

  6.热力学第二定律

  (1)热传导的方向性

  热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。

  (2)热力学第二定律的两种常见表述

  ①不可能使热量由低温物体传递到高温物体,而不引起其他变化。

  ②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。

  (3)永动机不可能制成

  ①第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。

  ②第二类永动机不可能制成:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。

  7.气体的状态参量

  (1)温度:宏观上表示物体的冷热程度,微观上是分子平均动能的标志。两种温标的换算关系:T=(t+273)K。

  绝对零度为-273.15℃,它是低温的极限,只能接近不能达到。

  (2)气体的体积:气体的体积不是气体分子自身体积的总和,而是指大量气体分子所能达到的整个空间的体积。封闭在容器内的气体,其体积等于容器的容积。

  (3)气体的压强:气体作用在器壁单位面积上的压力。数值上等于单位时间内器壁单位面积上受到气体分子的总冲量。

  ①产生原因:大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力。

  ②决定因素:一定气体的压强大小,微观上决定于分子的运动速率和分子密度;宏观上决定于气体的温度和体积。

  (4)对于一定质量的理想气体,PV/T=恒量

  8.气体分子运动的特点

  (1)气体分子间有很大的空隙。气体分子之间的距离大约是分子直径的10倍。

  (2)气体分子之间的作用力十分微弱。在处理某些问题时,可以把气体分子看作没有相互作用的质点。

  (3)气体分子运动的速率很大,常温下大多数气体分子的速率都达到数百米每秒。离这个数值越远,分子数越少,表现出“中间多,两头少”的统计分布规律。

高三物理知识点归纳15

  1.超重现象

  定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。

  产生原因:物体具有竖直向上的加速度。

  2.失重现象

  定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。

  产生原因:物体具有竖直向下的加速度。

  3.完全失重现象

  定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。

  产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。

  【超重和失重就是物体的重量增加和减小吗?】

  答:不是。

  只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。

  注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。

  另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。

【高三物理知识点归纳(汇编15篇)】相关文章:

高三物理知识点归纳12-07

高三物理知识点总结归纳12-09

高三物理下册知识点归纳07-30

高三物理知识点归纳(15篇)02-19

高三物理知识点归纳15篇02-18

高三物理高考必考知识点归纳11-10

高三物理必背知识点归纳08-04

高三物理知识点归纳精选15篇04-20

高三物理知识点归纳(通用15篇)04-19

高三物理知识点归纳(精选15篇)02-22