八年级上册数学知识点

时间:2024-11-08 09:13:47 数学 我要投稿

【精品】八年级上册数学知识点

  在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点是指某个模块知识的重点、核心内容、关键部分。哪些才是我们真正需要的知识点呢?以下是小编精心整理的八年级上册数学知识点,欢迎阅读与收藏。

【精品】八年级上册数学知识点

八年级上册数学知识点1

  1、确定位置

  在平面内,确定物体的位置一般需要两个数据。

  2、平面直角坐标系及有关概念

  ①平面直角坐标系

  在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  ②坐标轴和象限

  为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

  ③点的坐标的概念

  对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

  平面内点的与有序实数对是一一对应的。

  ④不同位置的点的坐标的特征

  a、各象限内点的.坐标的特征

  点P(x,y)在第一象限→ x>0,y>0

  点P(x,y)在第二象限 → x<0,y>0

  点P(x,y)在第三象限 → x<0,y<0

  点P(x,y)在第四象限 → x>0,y<0

  b、坐标轴上的点的特征

  点P(x,y)在x轴上 → y=0,x为任意实数

  点P(x,y)在y轴上 → x=0,y为任意实数

  点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

  c、两条坐标轴夹角平分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

  点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

  d、和坐标轴平行的直线上点的坐标的特征

  位于平行于x轴的直线上的各点的纵坐标相同。

  位于平行于y轴的直线上的各点的横坐标相同。

  e、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

  点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

  点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

  f、点到坐标轴及原点的距离

  点P(x,y)到坐标轴及原点的距离:

  点P(x,y)到x轴的距离等于 ∣y∣

  点P(x,y)到y轴的距离等于 ∣x∣

  点P(x,y)到原点的距离等于 √x2+y2

  3、坐标变化与图形变化的规律

八年级上册数学知识点2

  一、勾股定理

  1、勾股定理

  直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

  3、勾股数

  满足的三个正整数,称为勾股数。

  常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

  二、证明

  1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

  2、三角形内角和定理:三角形三个内角的和等于180度。

  (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

  (2)三角形的外角与它相邻的内角是互为补角。

  3、三角形的外角与它不相邻的内角关系

  (1)三角形的一个外角等于和它不相邻的两个内角的和。

  (2)三角形的一个外角大于任何一个和它不相邻的内角。

  4、证明一个命题是真命题的基本步骤

  (1)根据题意,画出图形。

  (2)根据条件、结论,结合图形,写出已知、求证。

  (3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

  三、数据的分析

  1、平均数

  ①一般地,对于n个数x1x2......xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数。

  ③平均数、中位数和众数都是描述数据集中趋势的统计量。

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义。

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

  ②数学上,数据的离散程度还可以用方差或标准差刻画。

  ③方差是各个数据与平均数差的平方的平均数。

  ④其中是x1,x2......xn平均数,s2是方差,而标准差就是方差的算术平方根。

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  初二上学期数学知识点归纳

  三角形知识概念

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

  5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的'外角。

  10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

  12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  13、公式与性质:

  (1)三角形的内角和:三角形的内角和为180°

  (2)三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的两个内角的和。

  性质2:三角形的一个外角大于任何一个和它不相邻的内角。

  (3)多边形内角和公式:边形的内角和等于?180°

  (4)多边形的外角和:多边形的外角和为360°

  (5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

  位置与坐标

  1、确定位置

  在平面内,确定一个物体的位置一般需要两个数据。

  2、平面直角坐标系

  ①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

  ②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

  ③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

  ④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

  ⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

  3、轴对称与坐标变化

  关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

  学好数学要重视“四个依据”是什么

  读好一本教科书——它是教学、考试的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好一本习题集——它是知识的拓宽;

  记好一本心得笔记——它是你自己的知识。

  提高数学学习的七大能力是什么

  1、运算能力,否则每次考试大题第一题你就开始错!

  2、空间想象能力,否则几何题会让你痛不欲生!

  3、逻辑思维能力,否则以后的证明题和推导题会让你生不如死!

  4、将实际问题抽象为数学问题的能力,不然应用题会让你虽死犹生!

  5、形数结合互相转化的能力。这考试每次考试的压轴题哦!

  6、观察、实验、比较、猜想、归纳问题的能力。不然每次选择或者填空题的最后一题找规律会让你内流满面!

  7、研究、探讨问题的能力和创新能力。不然每次的附加题咱们就不用看了!

  如何养成良好的数学学习习惯

  制定计划,成为习惯

  无论是学习哪一科,明确的目标计划都是最基本的方法,也是要被大家说烂了的提高成绩的基本。

  数学也是一样,虽然公式多,定义多,图形多,但完全不影响制定数学的学习计划。学习是一个长久性的打算,因此在制定数学学习内容的过程中可以尽量的详细一点。

  比如说每天做多少道题,掌握多少个公式,记住几个定义等等。这样才是学好高中数学应该做的步骤。

  其次就是每天按照自己给自己的规定去做,不要想着偷懒,今天不爱做就留给明天,想着明天多做点补回来。

  这种想法是非常错误的,今天的任务就要今天完成,想着自己为了提高数学成绩,无论如何都要努力。

  预习与复习相结合

  预习帮助大家在数学课上对知识有一个大概的了解,也对老师要讲的内容有个先知,不至于惊讶惊讶老师接下来要讲什么。

  而复习就是对这一堂课的数学学习进行一个验收和反馈,检验自己是否学会数学老师讲的内容;反馈自己的学习成效,及时找到自己数学学习的问题以便及时解决。

  这样在学习新的数学知识的时候就不会带着之前留下来的疑问了。这对于学好高中数学,提高数学成绩非常有帮助。

  高质量的完成作业

  作业是一个很好查缺补漏的过程,因此同学们想要学好数学,就一定要认真完成作业。不要依赖不会就空着等数学老师上课讲这样的想法,这样只会退步。

  数学学习就是要不断的动脑解决问题,所以作业要完成,还要高质量的去完成,这样才能不断提高自己的能力。

  不要空太多的题不写,就只等着老师公布正确答案和解题过程,这样一来,需要自己消化的数学问题就因为自己的懒惰变得越来越多,以至于影响之后的学习效率。

八年级上册数学知识点3

  全等三角形的对应边、对应角相等

  2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  3角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

  4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  5边边边公理(SSS)有三边对应相等的两个三角形全等

  6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  7定理1在角的平分线上的点到这个角的两边的距离相等

  8定理2到一个角的两边的距离相同的点,在这个角的平分线上

  9角的平分线是到角的两边距离相等的所有点的集合

  10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  23推论3等边三角形的各角都相等,并且每一个角都等于60°

  24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  25推论1三个角都相等的三角形是等边三角形

  26推论2有一个角等于60°的等腰三角形是等边三角形

  27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  28直角三角形斜边上的中线等于斜边上的一半

  29定理线段垂直平分线上的点和这条线段两个端点的距离相等

  30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  32定理1关于某条直线对称的两个图形是全等形

  33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  37勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  38定理四边形的内角和等于360°

  39四边形的外角和等于360°

  40多边形内角和定理n边形的内角的和等于(n-2)×180°

  41推论任意多边的外角和等于360°

  42平行四边形性质定理1平行四边形的对角相等

  43平行四边形性质定理2平行四边形的对边相等

  44推论夹在两条平行线间的平行线段相等

  45平行四边形性质定理3平行四边形的对角线互相平分

  46平行四边形判定定理1两组对角分别相等的四边形是平行四边形

  47平行四边形判定定理2两组对边分别相等的四边形是平行四边形

  48平行四边形判定定理3对角线互相平分的`四边形是平行四边形

  49平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  50矩形性质定理1矩形的四个角都是直角

  51矩形性质定理2矩形的对角线相等

  52矩形判定定理1有三个角是直角的四边形是矩形

  53矩形判定定理2对角线相等的平行四边形是矩形

  54菱形性质定理1菱形的四条边都相等

  55菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

  56菱形面积=对角线乘积的一半,即S=(a×b)÷2

  57菱形判定定理1四边都相等的四边形是菱形

  58菱形判定定理2对角线互相垂直的平行四边形是菱形

  59正方形性质定理1正方形的四个角都是直角,四条边都相等

  60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  61定理1关于中心对称的两个图形是全等的

  62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  64等腰梯形性质定理等腰梯形在同一底上的两个角相等

  65等腰梯形的两条对角线相等

  66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  67对角线相等的梯形是等腰梯形

  68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  70推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  71三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

  73 (1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d

  74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

  75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  76平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

  77推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  78定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  80定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  81相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  82直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  83判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  84判定定理3三边对应成比例,两三角形相似(SSS)

  85定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  86性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  87性质定理2相似三角形周长的比等于相似比

  88性质定理3相似三角形面积的比等于相似比的平方

  89任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

八年级上册数学知识点4

  全等三角形

  一、知识框架:

  二、知识概念:

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形。

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

  ⑷对应边:全等三角形中互相重合的边叫做对应边。

  ⑸对应角:全等三角形中互相重合的角叫做对应角。

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

  3.全等三角形的判定定理:

  ⑴边边边():三边对应相等的两个三角形全等。

  ⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

  ⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

  ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

  ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

  4.角平分线:

  ⑴画法:

  ⑵性质定理:角平分线上的点到角的两边的距离相等。

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

  5.证明的基本方法:

  ⑴明确命题中的`已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证。

  ⑶经过分析,找出由已知推出求证的途径,写出证明过程。

  数学不能只依靠上课听得懂

  很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

  初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

  只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

  质数和合数应用

  1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

  2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

八年级上册数学知识点5

  因式分解

  1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

  3.公因式的确定:系数的公约数?相同因式的最低次幂.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

  (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式.

  6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

  7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式与分式统称有理式;即.

  3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

  4.分式的基本性质与应用:

  (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

  (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

  即

  (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

  5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

  6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

  7.分式的'乘除法法则:.

  8.分式的乘方:.

  9.负整指数计算法则:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指数的运算法则都可用于负整指数计算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

  11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.

  12.同分母与异分母的分式加减法法则:.

  13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

  14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

  15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

  16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

  17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

  18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

  学好数学的方法有哪些

  1学好初中数学课前预习是重点

  数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。

  2独立完成初中数学作业

  在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。

  建立数学思维方式

  到了初中,数学出现了很多新的知识点,也是重点考点和关键难点,比如系统性的开始学习几何知识,首次引入函数的概念并求解一般的线性函数问题,这些对于初中生来说既是全新的,又是有一定难度的。这就需要学生创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。

  八年级上册数学第一章知识点归纳

  一、全等形

  1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

  2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。

  二、全等多边形

  1、定义:

  能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  2、性质:

  (1)全等多边形的对应边相等,对应角相等。

  (2)全等多边形的面积相等。

  三、全等三角形

  1、全等符号:"≌"。如图,不是为:△ABC≌△A′B′C′。读作:三角形ABC全等于三角形A′B′C′。

  2、全等三角形的判定定理:

  (1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,"边角边");

  (2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,"角边角")

  (3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,"角角边")

  (4)有三边对应相等的两三角形全等。(即SSS,"边边边")

  (5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,"斜边直角边")

  3、全等三角形的性质:

  (1)全等三角形的对应边相等、对应角相等;

  (2)全等三角形的周长相等、面积相等;

  (3)全等三角形对应边上的中线、高,对应角的平分线都相等。

  4、全等三角形的作用:

  (1)用于直接证明线段相等,角相等。

  (2)用于证明直线的平行关系、垂直关系等。

  (3)用于测量人不能的到达的路程的长短等。

  (4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

  (5)用于解决有关等积等问题。

八年级上册数学知识点6

  第一章轴对称图形

  轴对称图形线段角等腰三角形轴对称的性质等腰梯形轴对称的应用轴对称设计轴对称图案第二章勾股定理与平方根

  一.勾股定理

  1、勾股定理

  直角三角形两直角边a,b的平方和等于斜边c的平方,即abc

  2、勾股定理的逆定理

  如果三角形的三边长a,b,c有关系abc,那么这个三角形是直角三角形。

  3、勾股数:满足abc的三个正整数,称为勾股数。

  二、实数的概念及分类

  1、实数的分类

  正有理数

  有理数零有限小数和无限循环小数实数负有理数

  正无理数

  无理数无限不循环小数负无理数

  2、无理数:无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如7,32等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如

  (3)有特定结构的数,如0.1010010001等;

  (4)某些三角函数值,如sin60等

  o

  π3+8等;

  三、平方根、算数平方根和立方根

  1、算术平方根:一般地,如果一个正数x的平方等于a,即x=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  表示方法:记作“a”,读作根号a。

  性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

  2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  表示方法:正数a的平方根记做“a”,读作“正、负根号a”。

  2

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方:求一个数a的'平方根的运算,叫做开平方。注意a的双重非负性:

  a0

  3、立方根

  一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。

  表示方法:记作3a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:3a3a,这说明三次根号内的负号可以移到根号外面。

  a0

  四、实数大小的比较

  1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  2、实数大小比较的几种常用方法

  (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,

  ab0ab,ab0ab,ab0ab(3)求商比较法:设a、b是两正实数,1ab;baab1ab;ab1ab;

  (4)绝对值比较法:设a、b是两负实数,则abab。(5)平方法:设a、b是两负实数,则a2b2ab。

  五、实数的运算

  (1)六种运算:加、减、乘、除、乘方、开方

  (2)实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律

  加法交换律abba

  加法结合律(ab)ca(bc)乘法交换律abba乘法结合律(ab)ca(bc)乘法对加法的分配律a(bc)abac

八年级上册数学知识点7

  1.勾股定理

  1、勾股定理

  直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理

  如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。

  勾股数:满足a2b2c2的三个正整数,称为勾股数。

  2.实数

  一、实数的概念及分类

  1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数

  2、无理数:无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如7,32等;π

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

  (3)有特定结构的数,如0.1010010001等;

  (4)某些三角函数值,如sin60等二、实数的倒数、相反数和绝对值1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  4、数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  5、估算

  三、平方根、算数平方根和立方根

  1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  表示方法:记作“a”,读作根号a。

  性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

  2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  表示方法:正数a的平方根记做“a”,读作“正、负根号a”。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。a0注意a的双重非负性:a0

  3、立方根

  一般地,如果一个数x的立方等于a,即x=a那么这个数x就叫做a的立方根(或三次方根)。

  表示方法:记作3a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:3a3a,这说明三次根号内的负号可以移到根号外面。

  四、实数大小的比较

  1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  2、实数大小比较的几种常用方法

  (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  (2)求差比较:设a、b是实数,

  ab0ab,ab0ab,ab0ab

  (3)求商比较法:设a、b是两正实数,1ab;baab1ab;ab1ab;

  (4)绝对值比较法:设a、b是两负实数,则abab。

  (5)平方法:设a、b是两负实数,则abab。五、算术平方根有关计算(二次根式)

  1、含有二次根号“2、性质:

  2(1)(a)a(a0)

  22”;被开方数a必须是非负数。

  a(a0)

  (2)a2aa(a0)

  第1页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

  (3)abababab(a0,b0)(abab(a0,b0))n(n3)6、设多边形的边数为n,则多边形的对角线共有

  (a0,b0)(abab(a0,b0))2条。从n边形的一个顶点出

  3、运算结果若含有“a”形式,必须满足:

  (1)被开方数的因数是整数,因式是整式;

  (2)被开方数中不含能开得尽方的因数或因式

  六、实数的运算

  (1)六种运算:加、减、乘、除、乘方、开方

  (2)实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  (3)运算律

  加法交换律abba

  加法结合律(ab)ca(bc)乘法交换律abba

  乘法结合律(ab)ca(bc)乘法对加法的分配律a(bc)abac

  3.图形的平移与旋转

  一、平移

  1、定义

  在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

  2、性质

  平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

  二、旋转

  1、定义

  在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

  2、性质

  旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

  4.四边形性质探索

  一、四边形的相关概念

  1、四边形

  在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

  2、四边形具有不稳定性

  3、四边形的内角和定理及外角和定理

  四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。

  推论:多边形的内角和定理:n边形的内角和等于(n2)180°;多边形的外角和定理:任意多边形的外角和等于360°。

  发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

  二、平行四边形

  1、平行四边形的定义

  两组对边分别平行的四边形叫做平行四边形。

  2、平行四边形的性质

  (1)平行四边形的对边平行且相等。

  (2)平行四边形相邻的角互补,对角相等

  (3)平行四边形的对角线互相平分。

  (4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:

  (1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

  (2)推论:夹在两条平行线间的平行线段相等。

  3、平行四边形的'判定

  (1)定义:两组对边分别平行的四边形是平行四边形

  (2)定理

  1:两组对角分别相等的四边形是平行四边形

  (3)定理2:两组对边分别相等的四边形是平行四边形

  (4)定理3:对角线互相平分的四边形是平行四边形

  (5)定理4:一组对边平行且相等的四边形是平行四边形

  4、两条平行线的距离

  两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

  平行线间的距离处处相等。

  5、平行四边形的面积S平行四边形=底边长×高=ah

  三、矩形

  1、矩形的定义

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)矩形的对边平行且相等

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等且互相平分

  (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形

  (2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab四、菱形

  1、菱形的定义:有一组邻边相等的平行四边形叫做菱形

  第2页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

  2、菱形的性质

  (1)菱形的四条边相等,对边平行

  (2)菱形的相邻的角互补,对角相等

  (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

  (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

  3、菱形的判定

  (1)定义:有一组邻边相等的平行四边形是菱形

  (2)定理1:四边都相等的四边形是菱形

  (3)定理2:对角线互相垂直的平行四边形是菱形

  4、菱形的面积

  S菱形=底边长×高=两条对角线乘积的一半

  五、正方形(3~10分)

  1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)正方形四条边都相等,对边平行

  (2)正方形的四个角都是直角

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

  (4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

  3、正方形的判定

  判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。

  4、正方形的面积

  设正方形边长为a,对角线长为b,S正方形=a2

  (三)等腰梯形1、等腰梯形的定义

  两腰相等的梯形叫做等腰梯形。

  2、等腰梯形的性质

  (1)等腰梯形的两腰相等,两底平行。

  (2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

  (3)等腰梯形的对角线相等。

  (4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

  3、等腰梯形的判定

  (1)定义:两腰相等的梯形是等腰梯形

  (2)定理:在同一底上的两个角相等的梯形是等腰梯形

  (3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

  (四)梯形的面积

  (1)如图,S梯形ABCD12(CDAB)DE

  (2)梯形中有关图形的面积:

  ①SABDSBAC;②SAODSBOC;③SADCSBCD

  七、有关中点四边形问题的知识点:

  (1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;

  (2)顺次连接矩形的四边中点所得的四边形是菱形;

  (3)顺次连接菱形的四边中点所得的四边形是矩形;

  (4)顺次连接等腰梯形的四边中点所得的四边形是菱形;

  (5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;

  (6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;

  (7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;

  八、中心对称图形

  1、定义

  在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  九、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:

  b22

  六、梯形

  (一)1、梯形的相关概念

  一组对边平行而另一组对边不平行的四边形叫做梯形。

  梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2、梯形的判定

  (1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

  (2)一组对边平行且不相等的四边形是梯形。

  (二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形

  梯形直角梯形特殊梯形

  等腰梯形

  第3页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

  5.位置的确定

  一、在平面内,确定物体的位置一般需要两个数据。

  二、平面直角坐标系及有关概念1、平面直角坐标系

  在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

  3、点的坐标的概念

  对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,(a,b)和(b,a)是两个不同点的坐标。

  平面内点的与有序实数对是一一对应的。

  4、不同位置的点的坐标的特征

  (1)、各象限内点的坐标的特征

  点P(x,y)在第一象限x0,y0

  点P(x,y)在第二象限x0,y0点P(x,y)在第三象限x0,y0点P(x,y)在第四象限x0,y0

  (2)、坐标轴上的点的特征

  点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数

  点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点

  (3)、两条坐标轴夹角平分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

  (4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。

  (5)、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

  点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

  点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

  (6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:

  (1)点P(x,y)到x轴的距离等于y

  (2)点P(x,y)到y轴的距离等于x

  (3)点P(x,y)到原点的距离等于三、坐标变化与图形变化的规律:

  坐标(x,y)的变化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+axy22

  图形的变化被横向或纵向拉长(压缩)为原来的a倍放大(缩小)为原来的a倍关于y轴或x轴对称关于原点成中心对称沿x轴或y轴平移a个单位沿x轴平移a个单位,再沿y轴平移a个单6.一次函数

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数ykxb中的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:

  一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。

  第4页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

  k的符号b的符号函数图像y0x图像特征b>0图像经过一、二、三象限,y随x的增大而增大。k>0yb00x图像经过一、二、四象限,y随x的增大而减小K

八年级上册数学知识点8

  一、勾股定理

  勾股定理:直角三角形两直角边的平方和等于斜边的平方。

  我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。

  a2+b2=c2

  2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

  2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股

  数)。利用勾股数可以构造直角三角形。

  二、平方根

  1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。

  2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

  3、求一个数a的平方根的运算,叫做开平方。

  4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

  例如:4的平方根是±2,其中2叫做4的算术平方根,记作=2;2的平方根是±其中2的算术平方根。

  0只有一个平方根,0的平方根也叫做0的算术平方根,即

  三、立方根

  1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。

  2、求一个数a的立方根的运算,叫做开立方。

  3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  四、实数

  1、无限不循环小数称为无理数。

  2、有理数和无理数统称为实数。

  3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

  五、近似数与有效数字

  1、例如,本册数学课本约有100千字,这里100是一个近似似数。

  2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

  怎么样才能打好初二数学基础

  第一,重视初二数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对初二数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的.特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,初二学生缺乏对概念的理解。

  还有一部分初二同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?

  第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么初二的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。

  同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初二数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初二学生不会做到这一点那么久而久之,不会的数学题目还是不会。

  集合的定义

  集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。

  例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T……表示集合,而用小写字母如a,b,x,y……表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y?S。

八年级上册数学知识点9

  中线

  1、等腰三角形底边上的中线垂直底边,平分顶角;

  2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

  1、两边上中线相等的三角形是等腰三角形;

  2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

  角平分线

  1、等腰三角形顶角平分线垂直平分底边;

  2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的.距离相等。

  1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

  2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

  高线

  1、等腰三角形底边上的高平分顶角、平分底边;

  2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

  1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

  2、有两条高相等的三角形是等腰三角形。

八年级上册数学知识点10

  因式分解

  1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

  3.公因式的确定:系数的公约数?相同因式的最低次幂.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

  (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式.

  6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

  7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式与分式统称有理式;即.

  3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

  4.分式的基本性质与应用:

  (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

  (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

  即

  (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

  5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

  6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

  7.分式的乘除法法则:.

  8.分式的乘方:.

  9.负整指数计算法则:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指数的运算法则都可用于负整指数计算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

  11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.

  12.同分母与异分母的分式加减法法则:.

  13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

  14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

  15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

  16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

  17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

  18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

  数的`开方

  1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

  2.平方根的性质:

  (1)正数的平方根是一对相反数;

  (2)0的平方根还是0;

  (3)负数没有平方根.

  3.平方根的表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.

  4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0.

  5.三个重要非负数:a2≥0 ,|a|≥0,≥0 .注意:非负数之和为0,说明它们都是0.

  6.两个重要公式:

  (1) ; (a≥0)

  (2) .

  7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.

  8.立方根的性质:

  (1)正数的立方根是一个正数;

  (2)0的立方根还是0;

  (3)负数的立方根是一个负数.

  9.立方根的特性:.

  10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

  11.实数:有理数和无理数统称实数.

  12.实数的分类:(1) (2) .

  13.数轴的性质:数轴上的点与实数一一对应.

  14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:.

  三角形

  几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

  1.三角形的角平分线定义:

  三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例:

  (1) ∵AD平分∠BAC

  ∴∠BAD=∠CAD

  (2) ∵∠BAD=∠CAD

  ∴AD是角平分线

  2.三角形的中线定义:

  在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

  几何表达式举例:

  (1) ∵AD是三角形的中线

  ∴ BD = CD

  (2) ∵ BD = CD

  ∴AD是三角形的中线

  3.三角形的高线定义:

  从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

  (如图)

  几何表达式举例:

  (1) ∵AD是ΔABC的高

  ∴∠ADB=90°

  (2) ∵∠ADB=90°

  ∴AD是ΔABC的高

  ※4.三角形的三边关系定理:

  三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

  几何表达式举例:

  (1) ∵AB+BC>AC

  ∴……………

  (2) ∵ AB-BC

  ∴……………

  5.等腰三角形的定义:

  有两条边相等的三角形叫做等腰三角形. (如图)

  几何表达式举例:

  (1) ∵ΔABC是等腰三角形

  ∴ AB = AC

  (2) ∵AB = AC

  ∴ΔABC是等腰三角形

  6.等边三角形的定义:

  有三条边相等的三角形叫做等边三角形. (如图)

  几何表达式举例:

  (1)∵ΔABC是等边三角形

  ∴AB=BC=AC

  (2) ∵AB=BC=AC

  ∴ΔABC是等边三角形

  7.三角形的内角和定理及推论:

  (1)三角形的内角和180°;(如图)

  (2)直角三角形的两个锐角互余;(如图)

  (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

  ※(4)三角形的一个外角大于任何一个和它不相邻的内角.

  (1) (2) (3)(4)几何表达式举例:

  (1) ∵∠A+∠B+∠C=180°

  ∴…………………

  (2) ∵∠C=90°

  ∴∠A+∠B=90°

  (3) ∵∠ACD=∠A+∠B

  ∴…………………

  (4) ∵∠ACD >∠A

  ∴…………………

  8.直角三角形的定义:

  有一个角是直角的三角形叫直角三角形.(如图)

  几何表达式举例:

  (1) ∵∠C=90°

  ∴ΔABC是直角三角形

  (2) ∵ΔABC是直角三角形

  ∴∠C=90°

  9.等腰直角三角形的定义:

  两条直角边相等的直角三角形叫等腰直角三角形.(如图)

  几何表达式举例:

  (1) ∵∠C=90° CA=CB

  ∴ΔABC是等腰直角三角形

  (2) ∵ΔABC是等腰直角三角形

  ∴∠C=90° CA=CB

  10.全等三角形的性质:

  (1)全等三角形的对应边相等;(如图)

  (2)全等三角形的对应角相等.(如图)

  几何表达式举例:

  (1) ∵ΔABC≌ΔEFG

  ∴ AB = EF ………

  (2) ∵ΔABC≌ΔEFG

  ∴∠A=∠E ………

  11.全等三角形的判定:

  “SAS”“ASA”“AAS”“SSS”“HL”. (如图)

  (3)几何表达式举例:

  (1) ∵ AB = EF

  ∵ ∠B=∠F

  又∵ BC = FG

  ∴ΔABC≌ΔEFG

  (2) ………………

  (3)在RtΔABC和RtΔEFG中

  ∵ AB=EF

  又∵ AC = EG

  ∴RtΔABC≌RtΔEFG

  12.角平分线的性质定理及逆定理:

  (1)在角平分线上的点到角的两边距离相等;(如图)

  (2)到角的两边距离相等的点在角平分线上.(如图)

  几何表达式举例:

  (1)∵OC平分∠AOB

  又∵CD⊥OA CE⊥OB

  ∴ CD = CE

  (2) ∵CD⊥OA CE⊥OB

  又∵CD = CE

  ∴OC是角平分线

  13.线段垂直平分线的定义:

  垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)

  几何表达式举例:

  (1) ∵EF垂直平分AB

  ∴EF⊥AB OA=OB

  (2) ∵EF⊥AB OA=OB

  ∴EF是AB的垂直平分线

  14.线段垂直平分线的性质定理及逆定理:

  (1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)

  (2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)

  几何表达式举例:

  (1) ∵MN是线段AB的垂直平分线

  ∴ PA = PB

  (2) ∵PA = PB

  ∴点P在线段AB的垂直平分线上

  15.等腰三角形的性质定理及推论:

  (1)等腰三角形的两个底角相等;(即等边对等角)(如图)

  (2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)

  (3)等边三角形的各角都相等,并且都是60°.(如图)

  (1) (2) (3)几何表达式举例:

  (1) ∵AB = AC

  ∴∠B=∠C

  (2) ∵AB = AC

  又∵∠BAD=∠CAD

  ∴BD = CD

  AD⊥BC

  ………………

  (3) ∵ΔABC是等边三角形

  ∴∠A=∠B=∠C =60°

  16.等腰三角形的判定定理及推论:

  (1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)

  (2)三个角都相等的三角形是等边三角形;(如图)

  (3)有一个角等于60°的等腰三角形是等边三角形;(如图)

  (4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)

  (1) (2)(3) (4)几何表达式举例:

  (1) ∵∠B=∠C

  ∴ AB = AC

  (2) ∵∠A=∠B=∠C

  ∴ΔABC是等边三角形

  (3) ∵∠A=60°

  又∵AB = AC

  ∴ΔABC是等边三角形

  (4) ∵∠C=90°∠B=30°

  ∴AC = AB

  17.关于轴对称的定理

  (1)关于某条直线对称的两个图形是全等形;(如图)

  (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)

  几何表达式举例:

  (1) ∵ΔABC、ΔEGF关于MN轴对称

  ∴ΔABC≌ΔEGF

  (2) ∵ΔABC、ΔEGF关于MN轴对称

  ∴OA=OE MN⊥AE

  18.勾股定理及逆定理:

  (1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)

  (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)

  几何表达式举例:

  (1) ∵ΔABC是直角三角形

  ∴a2+b2=c2

  (2) ∵a2+b2=c2

  ∴ΔABC是直角三角形

  19.RtΔ斜边中线定理及逆定理:

  (1)直角三角形中,斜边上的中线是斜边的一半;(如图)

  (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)

  几何表达式举例:

  (1) ∵ΔABC是直角三角形

  ∵D是AB的中点

  ∴CD = AB

  (2) ∵CD=AD=BD

  ∴ΔABC是直角三角形

  几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

  一基本概念:

  三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.

  二常识:

  1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.

  2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.

  3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.

  4.三角形能否成立的条件是:最长边<另两边之和.

  5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.

  6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如图,双垂图形中,有两个重要的性质,即:

  (1) AC?CB=CD?AB ; (2)∠1=∠B,∠2=∠A .

  8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.

  9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.

  10.等边三角形是特殊的等腰三角形.

  11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.

  12.符合“AAA”“SSA”条件的三角形不能判定全等.

  13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.

  14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.

  15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.

  16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.

  17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.

  ※18.几何重要图形和辅助线:

  (1)选取和作辅助线的原则:

  ①构造特殊图形,使可用的定理增加;

  ②一举多得;

  ③聚合题目中的分散条件,转移线段,转移角;

  ④作辅助线必须符合几何基本作图.

  (2)已知角平分线.(若BD是角平分线)

  ①在BA上截取BE=BC构造全等,转移线段和角;

  ②过D点作DE‖BC交AB于E,构造等腰三角形.

  (3)已知三角形中线(若AD是BC的中线)

  ①过D点作DE‖AC交AB于E,构造中位线;

  ②延长AD到E,使DE=AD

  连结CE构造全等,转移线段和角;

  ③ ∵AD是中线

  ∴SΔABD= SΔADC

  (等底等高的三角形等面积)

  (4)已知等腰三角形ABC中,AB=AC

  ①作等腰三角形ABC底边的中线AD

  (顶角的平分线或底边的高)构造全

  等三角形;

  ②作等腰三角形ABC一边的平行线DE,构造

  新的等腰三角形.

  (5)其它

  ①作等边三角形ABC

  一边的平行线DE,构造新的等边三角形;

  ②作CE‖AB,转移角;

  ③延长BD与AC交于E,不规则图形转化为规则图形;

  ④多边形转化为三角形;

  ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;

  ⑥若a‖b,AC,BC是角平

  分线,则∠C=90°.

八年级上册数学知识点11

  分式知识点

  1、分式的基本性质:分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变。

  2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

  通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:1如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。

  2如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

  3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

  在约分时要注意:1如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;2如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;3约分一定要把公因式约完。

  实数知识点

  1、实数的分类:有理数和无理数

  2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.

  3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.若a与b护卫相反数,则a+b=0

  4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.

  5、倒数:乘积为1的两个数

  6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.平方和立方

  7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根也叫做二次方根.一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.

  实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

  实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列可以是循环的,也可以是非循环的。在实际运用中,实数经常被近似成一个有限小数保留小数点后n位,n为正整数,包括整数。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

  1相反数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

  2绝对值在数轴上一个数a与原点0的距离实数a的绝对值是:|a|

  ①a为正数时|a|=a不变,a是它本身;

  ②a为0时|a|=0,a也是它本身;

  ③a为负数时|a|=-a为a的绝对值,-a是a的相反数。

  任何数的绝对值都大于或等于0,因为距离没有负数。

  3倒数两个实数的乘积是1,则这两个数互为倒数实数a的倒数是:1/aa≠0

  4数轴

  定义:规定了原点,正方向和单位长度的直线叫数轴

  1数轴的三要素:原点、正方向和单位长度。

  2数轴上的点与实数一一对应。

  平方根与立方根知识点

  平方根:

  概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根或二次方根。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。

  因为±23=529,所以±23是529的平方根。问:116,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?20的平方根是什么?

  概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

  概括3:求一个数aa≥0的平方根的运算,叫做开平方。

  开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的`平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。

  一、算术平方根的概念

  正数a有两个平方根表示为?

  根,表示为a。

  0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0?0。“

  ”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:

  a,我们把其中正的平方根,叫做a的算术平方

  1被开方数a表示非负数,即a≥0;

  2a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a<0时,a无意义。

  如:=3,8是64的算术平方根,?6无意义。

  9既表示对9进行开平方运算,也表示9的正的平方根。

  二、平方根与算术平方根的区别在于

  ①定义不同;

  ②个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③表示方法不同:正数a的平方根表示为?a,正数a的算术平方根表示为a;④取值范围不同:正数的算术平方根一定是正数,正数的平方根是一正一负.⑤0的平方根与算术平方根都是0.三、例题讲解:

  例1、求下列各数的算术平方根:

  1100;

  249;

  30.8164

  注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算

  术平方根是非负数,即当a≥0时,a≥0当a<0时,a无意义

  用几何图形可以直观地表示算术平方根的意义如有一个面积为aa应是非负数、边长为

  的正方形就表示a的算术平方根。

  这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根。

  3、立方根

  1立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根也叫做三次方根,即如果x?a,那么x叫做a的立方根

  2一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

  3一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有的立方根。

  4利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数。

  直角三角形知识点

  一、解直角三角形

  1.定义:已知边和角两个,其中必有一边→所有未知的边和角。

  2.依据:①边的关系:初中数学复习提纲

  ②角的关系:A+B=90°

  ③边角关系:三角函数的定义。

  注意:尽量避免使用中间数据和除法。

  二、对实际问题的处理

  1.初中数学复习提纲俯、仰角

  2.方位角、象限角

  3.坡度:

  4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

  图形的轴对称知识点

  I线段的垂直平分线

  ①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线

  ②性质:

  a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;

  b、到线段两端点距离相等的点在线段的垂直平分线上;

  c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。

  II角平分线的性质

  ①角平分线上的点到已知角两边的距离相等

  ②到已知角两边距离相等的点在已知角的角平分线上

  ③角是轴对称图形,角平分线所在的直线是该角的对称轴。

  二次根式知识点

  1.二次根式:式子≥0叫做二次根式。

  2.最简二次根式:

  1最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;③分母中不含根式。

  2最简二次根式必须同时满足下列条件:

  ①被开方数中不含开方开的尽的因数或因式;

  ②被开方数中不含分母;

  ③分母中不含根式。

  3.同类二次根式可合并根式:

  几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。

  4.二次根式的性质

  非负性:是一个非负数.

  注意:此性质可作公式记住,后面根式运算中经常用到.

  ①字母不一定是正数.

  ②能开得尽方的因式移到根号外时,必须用它的算术平方根代替.

  ③可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.

  4公式与的区别与联系:

  ①表示求一个数的平方的算术根,a的范围是一切实数.

  ②表示一个数的算术平方根的平方,a的范围是非负数.

  ③和的运算结果都是非负的

  估算知识点

  1.四舍五入

  例题:2的算数平方根保留到0.01

  解:根号2=1.414.....≈1.41

  2.进一法

  例题:一支笔2.6元,四支需多少钱保留到整数

  解:2.6*4=10.4元≈11元

  如果四舍五入的话是10元,是不够的,所以是要进上去的

  3.去尾法

  例题:有20元,买3元一支的笔,可卖多少支?

  解:20/3=6.6666....支≈6支

  如果四舍五入的话是7支,买不到,所以是要去掉的

  按照一般方法就是把854估做840,840除以7等于120.但这样在尺度上让学生不好把握.我们可以直接算出854除以7等于122.再看122最接近那个整十或整百数.我们不难看出122字接近120,所以估算结果等于120.这样学生通过求除法的准确值,再找出商最接近的整十或整百数就容易多了

  比如2个数或多个数相乘或则相加、相减、相除,我们不能很快且正确的算出来,就是只有打开的算出来。

八年级上册数学知识点12

  平行四边形

  1、平行四边形的定义

  两组对边分别平行的四边形叫做平行四边形。

  2、平行四边形的性质

  (1)平行四边形的对边平行且相等。

  (2)平行四边形相邻的角互补,对角相等

  (3)平行四边形的对角线互相平分。

  (4)平行四边形是中心对称图形,对称中心是对角线的交点。

  常用点:

  (1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

  (2)推论:夹在两条平行线间的平行线段相等。

  3、平行四边形的判定

  (1)定义:两组对边分别平行的四边形是平行四边形

  (2)定理1:两组对角分别相等的四边形是平行四边形

  (3)定理2:两组对边分别相等的四边形是平行四边形

  (4)定理3:对角线互相平分的四边形是平行四边形

  (5)定理4:一组对边平行且相等的四边形是平行四边形

  4、两条平行线的距离。两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。

  5、平行四边形的面积

  S平行四边形=底边长×高=ah

  数学八年级学习方法

  掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的`学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。

  数学八年级学习技巧

  初中数学的快速记忆法之歌诀记忆

  就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

八年级上册数学知识点13

  一、整式的乘法

  1、同底数幂的乘法:aman=am+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

  2、幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

  3、积的乘方法则:(ab)n = anbn(n为正整数)积的乘方=乘方的积

  4、单项式与单项式相乘法则:

  (1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式

  5、单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

  6、多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  二、乘法公式

  1、平方差公式:(a+b)(a-b)=a2-b2。

  2、完全平方公式:(a±b)2=a2±2ab+b2

  口诀:前平方,后平方,积的两倍中间放,中间符号看情况。(这个情况就是前后两项同号得正,异号得负。)

  3、添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

  八年级上册数学知识点

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的.主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  第七章知识点

  1、二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  2、二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  3、二元一次方程组

  含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  4、二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  5、二元一次方程组的解法

  (1)代入(消元)法(2)加减(消元)法

  第八章知识点

  1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

  2、平均数

  加权平均数

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  初二数学上册知识点

  1、性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  2、分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a、关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b、一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  初数学求定义域口诀

  求定义域有讲究,四项原则须留意。

  负数不能开平方,分母为零无意义。

  指是分数底正数,数零没有零次。

  限制条件不唯一,满足多个不等式。

  求定义域要过关,四项原则须注意。

  负数不能开平方,分母为零无意义。

  分数指数底正数,数零没有零次。

  限制条件不唯一,不等式组求解集。

八年级上册数学知识点14

  能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中相似比为1:1的特殊情况)

  当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  由此,可以得出:全等三角形的对应边相等,对应角相等。

  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

  (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

  (3)有公共边的,公共边一定是对应边;

  (4)有公共角的,角一定是对应角;

  (5)有对顶角的,对顶角一定是对应角;

  表示:全等用“≌”表示,读作“全等于”。

  初二数学上册知识点

  一、知识概念

  1、同底数幂的'乘法法则:m,n都是正数

  2、幂的乘方法则:m,n都是正数

  3、整式的乘法

  (1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的`一个因式。

  (2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  (3)多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  4、平方差公式:

  5、完全平方公式:

  6、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且m>n、

  在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0、

  ②任何不等于0的数的0次幂等于1,即,如,―2、50=1,则00无意义、

  ③任何不等于0的数的―p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p是正整数,而0―1,0―3都是无意义的;当a>0时,a―p的值一定是正的;当a<0时,a―p的值可能是正也可能是负的,如,④运算要注意运算顺序、

  7、整式的除法

  单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加、

  8、分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式、

  分解因式的一般方法:1、提公共因式法2、运用公式法3、十字相乘法

  分解因式的步骤:1先看各项有没有公因式,若有,则先提取公因式;

  2再看能否使用公式法;

  3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

  4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

  5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止、

  整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

  初中数学学习技巧

  养成良好的学习数学习惯

  多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  及时了解、掌握常用的数学思想和方法

  中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

  有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

  逐步形成“以我为主”的学习模式

  数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

  初中数学重点知识点

  平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

八年级上册数学知识点15

  (有理数总可以用有限小数或无限循环小数表示)

  一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

  特别地,我们规定0的算术平方根是0。

  一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)

  一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

  求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

  一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

  正数的立方根是正数;0的立方根是0;负数的立方根是负数。

  求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

  有理数和无理数统称为实数,即实数可以分为有理数和无理数。

  每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  在数轴上,右边的点表示的数比左边的点表示的数大。

  实数知识点

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  打好基础

  数学基础包括基础知识和基本技能。基础知识是指数学公式,定理,原理和概念之间的内在和外在联系。基本技能指的是计算技巧,绘图技巧以及使用公式解决问题。技能等等。只要掌握了基础知识和基本技能,学生就可以灵活运用数学知识来解决各种问题。

  注意新旧知识之间的联系

  数学知识是初中的基础。学生可以合理地分配时间在初中复习这部分知识,同时学习新知识。新知识的学习通常是通过旧知识或以前学习知识的延续来引入的。因此,在学习数学的过程中,学生应注意接触新旧知识,巩固和提高对数学知识的掌握程度。

  善于总结和整理

  要想把数学学好的话,我们在学习之后,对于重点内容,我们一定要善于总结和整理,不断的强化记忆一下重点知识点。

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  高中数学学习方法

  1怎么才能提高高考数学成绩

  一、看课本补基础

  基础很差,那就不要总想着有什么捷径,不要给自己找理由去偷懒,积累的过程从来就没有捷径,看课本补上基础,是一个缓慢但却最实际最靠谱的方法,特别是高三第一轮复习的时候,对于概念,公式,如何推导公式等一定要重点弄懂,还有每个知识点后面的例题,至于有同学会问那些课后习题需要做么?我觉得应该没有那么多时间,而且那些针对性也不强,毕竟有些必修课本是面向全部学生,没有分文理科的。

  二、跟着老师步骤去看课本补基础

  在第一轮复习的时候,很多同学会觉得很多知识点都不懂并且还会有不知从哪里去看课本好,这时老师复习节奏很重要,你就不要自己计划今天要复习课本哪里,第一轮复习可以跟着老师步骤,老师讲到哪,就去看这部分知识点的内容,具体按照上一步骤。

  2提高高考数学成绩的技巧

  背例题

  这个是一个比较冷门但是效果奇好的提高数学成绩的方法。这个办法就是,遇到你不会的题目,如果怎么都做不出来,你就不用花时间弄懂它了,把它背下来,但是不要什么题都背,要背那种中等难度的题,高难的题一般以后也用不上,简单的.你自己就会做。这样做一段时间,你会发现你节省了很多时间,遇到不会的题你也会往里面“套答案”了。

  课后复习

  高中数学一定要注意的一点就是时效性,一定要在课后及时复习,这样做的原因就是如果你隔几天在看,你会发现你的知识点已经忘记的差不多了,这个时候你在复习,就产不多相当于又重新在学一次,所以“趁热打铁”这个成语同样适用于高中数学的学习。其次,我们复习过得知识也不是一劳永逸的,每周、每个月都最好总结一下。这样有利于形成我们的知识网络,更加方便记忆。

  3提高高考数学成绩的窍门

  仔细研读教材

  对于高考的数学来说,高考的出题一直是源自教材的,所以在高三学生复习的过程中,需要认真阅读数学的教材,并且将教材中的知识、概念、例题、等知识点加以分析,在数学的知识点中,有很多知识点网络的交汇处是历年高考的高频考点,想要考好数学的学生可以将数学课本中的知识串成串,连成线,汇成面,并且将高考中出现的各个知识点加以练习并相互结合。

  找到适合自己学习数学的方式

  每个高三学生的学习情况都不一样,所以针对于他们的训练方式也不同。但是对于训练的目标有很多相同之处。所以在高三学生学习数学备考的时候应该合理安排训练。首先就需要高三学生弄清楚自己的需要,无论是数学的试卷还是专题,都需要自己一点一点来做。

  并且弄清楚自己那些知识点存在着问题,就要多做一些此类知识点。其次就是要制定一个合理的目标,学习要为了自己的成绩而学,不是为了老师和家长而学习,在做题之前首先要制定一个目标,通过一些训练的方式来提高自己的数学做题的准确率。

【八年级上册数学知识点】相关文章:

八年级上册数学知识点10-18

八年级上册数学知识点03-15

人教版八年级数学上册知识点02-08

八年级数学上册知识点归纳07-07

人教版八年级数学上册知识点10-08

八年级数学上册知识点总结09-01

人教版八年级上册数学知识点11-30

【经典】人教版八年级上册数学知识点11-21

(合集)八年级上册数学知识点11-07