- 相关推荐
中考复习数学试卷基础题及答案
在平时的学习、工作中,我们需要用到试卷的情况非常的多,试卷是纸张答题,在纸张有考试组织者检测考试者学习情况而设定在规定时间内完成的试卷。什么样的试卷才是好试卷呢?以下是小编整理的中考复习数学试卷基础题及答案,仅供参考,大家一起来看看吧。

中考复习数学试卷基础题及答案 1
A级 基础题
1.分式方程5x+3=2x的解是( )
A.x=2 B.x=1 C.x=12 D.x=-2
2.下面是四位同学解方程2x-1+x1-x=1过程中去分母的一步,其中正确的是( )
A.2+x=x-1 B.2-x=1 C.2+x=1-x D.2-x=x-1
3.分式方程10020+v=6020-v的解是( )
A.v=-20 B.v=5 C.v=-5 D.v=20
4.甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/时,依题意列方程正确的是( )
A.30x=40x-15 B.30x-15=40x C.30x=40x+15 D.30x+15=40x
5.若代数式2x-1-1的值为零,则x=________.
6今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 ______________元.
7.解方程:6x-2=xx+3-1.
8.当x为何值时,分式3-x2-x的值比分式1x-2的`值大3?
9.某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量.
B级 中等题
10.若关于x的分式方程2x-ax-1=1的解为正数,那么字母a的取值范围是__________.
11.若关于x的方程axx-2=4x-2+1无解,则a的值是__________.
12.中山市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,该队提高了施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成.求实际平均每天修绿道的长度?
C级 拔尖题
13. 由于受到手机更新换代的影响,某手机店经销的iPhone4手机二月售价比一月每台降价500元.如果卖出相同数量的iPhone4手机,那么一月销售额为9万元,二月销售额只有8万元.
(1)一月iPhone4手机每台售价为多少元?
(2)为了提高利润,该店计划三月购进iPhone4S手机销售,已知iPhone4每台进价为3500元,iPhone4S每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
(3)该店计划4月对iPhone4的尾货进行销售,决定在二月售价基础上每售出一台iPhone4手机再返还顾客现金a元,而iPhone4S按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?
参考答案:
1.A 2.D 3.B 4.C 5.3
6.2200 解析:设条例实施前此款空调的售价为x元,由题意列方程,得10 000x(1+10%)=10 000x-200,解得x=2200元.
7.解:方程两边同乘以(x-2)(x+3),
得6(x+3)=x(x-2)-(x-2)(x+3),
化简,得9x=-12,
解得x=-43.
经检验,x=-43是原方程的解.
8.解:由题意列方程,得3-x2-x-1x-2=3,
解得x=1.
经检验x=1是原方程的根.
9.解:设手工每小时加工产品的数量为x件,
则由题意,得18002x+9=1800x?37
解得x=27.
经检验,x=27符合题意且符合实际.
答:手工每小时加工产品的数量是27件.
10.a>1且a≠2
11.2或1
12.解:设原计划平均每天修绿道的长度为x米,
则1800x-1800?1+20%?x=2,
解得x=150.
经检验:x=150是原方程的解,且符合实际.
150×1.2=180(米).
答:实际平均每天修绿道的长度为180米.
13.解:(1)设二月iPhone4手机每台售价为x元,
由题意,得90 000x+500=80 000x,
解得x=4000.
经检验:x=4000是此方程的根.x+500=4500.
故一月iPhone4手机每台售价为4500元.
(2)设购进iPhone4手机m台,则购进iPhone4S手机(20-m)台.由题意,得
74 000≤3500m+4000(20-m) ≤76 000,
解得8≤m≤12 ,因为m只能取整数,
m取8,9,10,11,12,共有5种进货方案.
(3)设总获利为w元,则w=(500-a)m+400(20-m)=(100-a)m+8000,
当a=100时,(2)中所有方案获利相同.
中考复习数学试卷基础题及答案 2
一、选择题
1.下列方程,是一元二次方程的是()
①3x2+x=20,②2x2-3xy+4=0,③x2-=4,④x2=0,⑤x2-+3=0
A.①②B.①②④⑤C.①③④D.①④⑤
2.若,则x的取值范围是()
A.x<3B.x≤3C.0≤x<3D.x≥0
3.若=7-x,则x的取值范围是()
A.x≥7B.x≤7C.x>7D.x<7
4.当x取某一范围的实数时,代数式+的值是一个常数,该常数是()
A.29B.16C.13D.3
5.方程(x-3)2=(x-3)的根为()
A.3B.4C.4或3D.-4或3
6.如果代数式x2+4x+4的值是16,则x的值一定是()
A.-2B.2,-2C.2,-6D.30,-34
7.若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()
A.1B.-1C.2D.-2
8.从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2,则原来正方形的面积为()
A.100cm2B.121cm2C.144cm2D.169cm2
9.方程x2+3x-6=0与x2-6x+3=0所有根的乘积等于()
A.-18B.18C.-3D.3
10.三角形两边长分别是8和6,第三边长是一元二次方程x2-16x+60=0一个实数根,则该三角形的面积是()
A.24B.48C.24或8D.8
二、填空题
11.若=3,=2,且ab<0,则a-b=_______.
12.化简=________.
13.的整数部分为________.
14.在两个连续整数a和b之间,且a<
15.x2-10x+________=(x-________)2.
16.若关于x的一元二次方程(m+3)x2+5x+m2+2m-3=0有一个根为0,则m=______,另一根为________.
17.方程x2-3x-10=0的两根之比为_______.
18.已知方程x2-7x+12=0的两根恰好是Rt△ABC的两条边的长,则Rt△ABC的第三边长为________.
19.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.
20.某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.
三、解答题
21.计算(每小题3分,共6分)
(1)(+)-(-)(2)(+)÷
22.用适当的方法解下列方程(每小题3分,共12分)
(1)(3x-1)2=(x+1)2(2)2x2+x-=0
(3)用配方法解方程:x2-4x+1=0;p
(4)用换元法解方程:(x2+x)2+(x2+x)=6
23.(6分)已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.
(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;
(3)方程的'一个根为0.
24.(5分)已知x1,x2是一元二次方程2x2-2x+m+1=0的两个实数根.
(1)求实数m的取值范围;
(2)如果x1,x2满足不等式7+4x1x2>x12+x22,且m为整数,求m的值.
25.(5分)已知x=,求代数式x3+2x2-1的值.
26.(6分)半径为R的圆的面积恰好是半径为5与半径为2的两个圆的面积之差,求R的值.
27.(6分)某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会?
28.(7分)有100米长的篱笆材料,想围成一个矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,现请你设计矩形仓库的长和宽,使它符合要求.
29.(7分)“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况.
(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;
(2)根据图中所给数据,求我国从1998年到2002年教育经费的年平均数;
(3)如果我国的教育经费从2002年的5480亿元,增加到2004年7891亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01,=1.200)
参考答案:
1.D2.C3.B4.D5.C6.C7.B8.A9.A10.C
11.-712.2-13.414.a=3,b=415.25,516.1,-
17.-或-18.5或19.25或3620.
21.(1)-;(2)+
22.(1)x1=0,x2=1;(2)x=-±;
(3)(x-2)2=3,x1=2+,x2=2-;
(4)设x2+x=y,则y2+y=6,y1=-3,y2=2,则x2+x=-3无解,x2+x=2,x1=-2,x2=1.
23.△=16m2-8(m+1)(3m-2)=-8m2-8m+16,
(1)方程有两个相等的实数根,
∴△=0,即-8m2-8m+16=0,求得m1=-2,m2=1;
(2)因为方程有两个相等的实数根,
所以两根之和为0且△≥0,则-=0,求得m=0;
(3)∵方程有一根为0,∴3m-2=0得m=.
24.(1)△=-8m-4≥0,∴m≤-;(2)m=-2,-1
25.026.27.9个
28.方案一:设计为矩形(长和宽均用材料:列方程可求长为30米,宽为20米);
方案二:设计为正方形.在周长相等的条件下,正方形的面积大于长方形的面积,它的边长为25米;
方案三:利用旧墙的一部分:如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为(100-2x)米,可求一边长为(25+5)米(约43米),另一边长为14米;
方案四:充分利用北面旧墙,这时面积可达1250平方米.
29.(1)由图可见,1998~2002年的五年内,我国教育经费投入呈现出逐年增加的趋势;(2)我国从1998年到2002年教育经费的平均数为:
=4053(亿元);
(3)设从2002年到2004年这两年的教育经费平均年增长率为x,
则由题意,得5480(1+x2)=7891,解之得x≈20%.
中考复习数学试卷基础题及答案 3
一、填空:
(1)若x5,则|x-5|=______,若|x+2|=1,则x=______
(2)4080300保留三个有效数字的近似值数是_______
(3)在代数式a2、a2+1、(a+1)2、a2+|a|中,一定表示正数的是______
(4)(-32)的底数是____,幂是____,结果是____
(9)一个三位数,十位数字是a,个位数字比十位数字的2倍小3,百位数字是十位数字的一半,用代数表示这个三 位数是_____
(10)若多项式(2mx2-x2+3x+1)-(5x2-4y2+3x)的值与x无关,则2m3-[3m2+(4m-5)+m]的值是____
二、选择题:
(1)已知x0,且|x|=2,那么2x+|x|=( )
A、2 B、-2 C、+2 D、0
A、x0 B、x0 C、x0 D、x0
(3)如果一个有理数的平方根等于-x,那么x是( )
A、负数 B、正数 C、非负数 D、不是正数
(4 )如果|a-3|=3-a,则a的取值范围是( )
A、a3 B、a3 C、a3 D、a3
三、求值:
(4)若代数式2y2+3y+7的.值为8,求代数式4y2+6y+9的值
(5)试证明当x=-2时,代数式x3+1 的值与代数式(x+1)(x2-x+1) 的值相等
四、化简
(1)化简求值:
-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=2,y=1/2
(2)当x=-2时ax3+bx-7的值是5,求当x =2 时,ax3+bx-17的值
(3)已知多项式2(x2+abx+3b)与2bx2-2abx+3a的和中,只有常数项-3,求a与b的关系
五、选作题:
(2)用简便方法指出下列各数的末位数字是几:
①2019
②2135
③2216
④2315
⑤2422
⑥2527
⑦2628
⑧2716
⑨2818⑩2924
答案:
一、⑴5-x,-1或-3
⑵4.08106
⑶a2+1⑷3,32,-9
⑸17
二、⑴B ⑵B ⑶D ⑷B
三、⑴0.1 ⑵b=3cm ⑶3 ⑷11 ⑸略
四、⑴x2-xy-4y2值为1 ⑵值为-29 ⑶a与b互为相反数(a=1,b=-1)
五、⑴0.99
⑵①0②1③6④7⑤6⑥5⑦6⑧1⑨4⑩1
【中考复习数学试卷基础题及答案】相关文章:
中考英语单选基础题含答案06-13
中考数学基础选择题复习指导08-30
水浒传中考复习检测题及答案01-03
中考语文基础复习指导10-15
中考复习需牢固基础10-11
中考复习:化学基础强化模拟题选择题07-23
中考英语基础知识复习05-21