音响师 百分网手机站

音响中的“频响曲线”(2)

时间:2017-12-20 08:55:07 音响师 我要投稿

音响中的“频响曲线”

  反过来说曲线平直,曲线平直就是系统或设备对输入信号中各个频段的音量强弱的还原度高。作为音响,这只是个基础性的指标,但是也是很重要的指标。比如一个音量还原度好的音响系统,输入的音源信号本身高中低等等各个声部音量比例和谐(比如录音大师录制的音乐大师级的作品,好像什么发烧天碟之类的。),通过音箱还原出来自然就感觉和谐。如果输入的信号是个只会狂喊乱叫的卡拉OK级别的歌手演唱的歌,原本就唱得就高中低音不和谐,从高还原度的音响系统出来那自然也不和谐。但是,还原度不好的系统,比如频响曲线在低频突起,中高频又有点凹陷的,可能把原本不是很强的贝司变强了,把本来该强的小号变弱了,播放原本各声部音量和谐的作品可能变得不和谐。但是,如果碰巧碰上本来把乐手把该强的贝司音弹弱了,或者把本来该弱的小号音吹强了的情况,负负得正,播放原本音量不和谐的作品,用这种还原度低的音箱可能反倒比还原度更高的音箱更和谐动听了。

  另外, 对于音响产品而言,其实不光是音箱,功放、调音台以及其他周边设备,都有频响曲线。按照工业标准,都要求这些设备在未做调整的情况下,都要有平直的频响曲线,目的就是要求这些设备首先要尽可能对信号的特性中的音量强弱保持忠实还原的态度。假若你使用的均衡器,在没有调整,推子都打平的情况下,频响曲线就在80赫兹的地方高了,在1000赫兹的地方又低了,你还会要它吗?

  怎么从音响的频响曲线上看灵敏度?

  1. 灵敏度是在一定的输入电平(功率)下,该设备在一定位置上所产生的声压级。

  2. 频率响应,功率放大器输出满功率时对不同频率信号的放大倍数曲线,良好的功放应对音频范围内的信号具有一致的放大倍数,即平坦的频率响应。

  通常来说灵敏度测量会取1KHz这一个输入频率来看,而频率响应会从20Hz到20KHz整个频段来看,所以如果非要从频响曲线去看灵敏度的话,可以分以下两种情况:

  1. 如果整个频响曲线还比较平坦的话,那么在相同输入时,曲线的Y刻度大,则灵敏度越大;

  2. 如果整个频响曲线不是很平坦,那么就重点观察X轴为1KHz这一个点就好了,同样的输入时,Y刻度越大,则灵敏度越大。

  耳机与频响曲线

  通过频响曲线看耳机的好坏不太容易。

  耳机音膜中心为低频边缘为高频。

  频响曲线的低频端为下降趋势,为了获得更多的低频动能,因此耳机中心的球形设计是为了增大他的表面积而获得低音,耳机中频的频响曲线比较平坦,是因为音膜表面的螺旋状纹路。

  耳机高频端的频响曲线上有一个大锯齿,是因为音膜边缘有一个软环 是为了增加音膜弹性,因此软材料的共振频率下降,过了软环到了粘接边缘材料变硬,共振频率上升,形成一个大锯齿。每个耳机都有无法避免。

  耳机高频端的频响曲线上有很多小锯齿,音膜支架和音膜边缘粘接有毛刺。和耳机制造工艺有关,如果支架和音膜一体化就不会有该问题。

  知道了上述情况,我们在选择耳机时注重他的频响曲线,低端增益要大,高频端小锯齿要少,中频要平。

  音质与频响曲线

  影响音质的因素太多了。

  首先来看看什么叫音质。音质指的是实际声波与原始波形的接近程度,即回放出来的实际声波与原音频文件所保存的波形越接近,则音质越好。假设有一个音频文件 A.wav,又有一个理想的录音设备,它可以将空气中的声音毫无损失地录下来,存为 B.wav,则这个 A.wav 与 B.wav (从时域和频域上都)越接近越好(更多请阅读本站原文:何为音质?!)。

  对一个系统(设备)来说,幅频响应和相频响应在一起才构成整个系统的响应,而一般说的频响曲线只是指幅频响应。

  一个音频文件从手机里播放到被人听到需要经过哪些影响音质的过程。大致过程是这样的:音频文件 -> 操作系统的混音器(Mixer)-> 操作系统 DSP 算法(音效、重采样,可能会用到 DSP 芯片)-> DAC -> 放大器 -> 耳机/音箱 -> 空气 -> 人耳。

  鉴于空气和人耳是无法控制的,所以只研究到音箱/耳机出来的声音。这前面几乎每一步都会影响音质。

  首先是操作系统的混音器,它负责的是将系统内各个播放声音的程序混合到一起,从而可以使各个程序同时发声而不会出现一个程序将输出设备独占而其他程序不能发声的情况。表现在代码上也就是做加法,把各个程序的输出加起来。如果只有一个程序在播放音乐那还好,但手机还要处理铃声和提醒声音等。加法是怎么做的呢?这取决于算法。如果是定点的加法,为了保证加完的值不会溢出,会先对两个数据进行右移再相加。浮点的情况更为复杂,而且因为现有大多音频文件都是 16 位定点格式,所以还要经过定点浮点之间的相互转换,这个过程也会损失精度。总之,程序会通过牺牲精度来换取动态范围。而如果只有一个程序在输出呢?别忘了还有个调节音量的东西吧,那个就是给波形上的每个点乘以一个增益值(gain),乘法过程也是会有精度损失的。总的来说,混音器这一步的精度损失无法避免。但手机上除了输入和输出过程,中间都是浮点运算的,精度的损失一般不会超过 -90dB,一般是听不出来的。

  然后是 DSP 算法部分。音效(低音增强、增加空间感等)这一部分是主观性的,不属于「音质」的范畴,就不讨论了。假设所有音效都已关闭,那唯一剩下的就是重采样。对手机来说,重采样的存在是由于一个 DSP 芯片往往只支持一种输出采样率,或者 DAC 只支持一种输入采样率,而大部分情况下这个采样率是 48kHz。这是由于如果要支持不同采样率,特别是像 44.1kHz 和 48kHz 这种不成整数关系的采样率,需要配备频率不同的晶振。由于各种原因,晶振产生 48kHz 的时钟频率更容易。然而,由于各种历史原因,目前的大部分音乐都是 44.1kHz 的,因此会经过一个 44.1kHz->48kHz 的重采样。非整数倍的重采样是会大大损失精度的,不要以为采样率变高了音质就会变好。不经过重采样直接输出的才是最好的音质。重采样对音质的影响取决于重采样算法,劣质的算法可以导致严重失真。