国际中小学

高二数学知识点归纳:等差数列

时间:2025-11-18 15:50:38 银凤 国际中小学 我要投稿
  • 相关推荐

高二数学知识点归纳:等差数列

  漫长的学习生涯中,是不是听到知识点,就立刻清醒了?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。为了帮助大家掌握重要知识点,以下是小编为大家整理的高二数学知识点归纳:等差数列,欢迎大家分享。

高二数学知识点归纳:等差数列

  等差数列的通项公式为:an=a1+(n-1)d

  或an=am+(n-m)d

  前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

  若m+n=2p则:am+an=2ap

  以上n均为正整数

  文字翻译

  第n项的值=首项+(项数-1)*公差

  前n项的和=(首项+末项)*项数/2

  公差=后项-前项

  等比数列求和公式

  (1) 等比数列:a (n+1)/an=q (n∈N)。

  (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);

  (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)

  (4)性质:

  ①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

  ②在等比数列中,依次每 k项之和仍成等比数列.

  ③若m、n、q∈N,且m+n=2q,则am×an=aq^2

  (5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".

  (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

  等差数列的性质:

  (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;

  (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;

  (3)m,n∈N*,则am=an+(m-n)d;

  (4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;

  (5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。

  (6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即

  对等差数列定义的理解:

  ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.

  ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有

  ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;

  ④ 是证明或判断一个数列是否为等差数列的依据;

  ⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

  等差数列求解与证明的基本方法:

  (1)学会运用函数与方程思想解题;

  (2)抓住首项与公差是解决等差数列问题的关键;

  (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).

  等差数列的通项公式为:

  an=a1+(n-1)d (1)

  前n项和公式为:

  Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

  从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

  在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.

  且任意两项am,an的关系为:

  an=am+(n-m)d

  它可以看作等差数列广义的通项公式.

  从等差数列的定义、通项公式,前n项和公式还可推出:

  a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

  若m,n,p,q∈N*,且m+n=p+q,则有

  am+an=ap+aq

  Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

  Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

  和=(首项+末项)*项数÷2

  项数=(末项-首项)÷公差+1

  首项=2和÷项数-末项

  末项=2和÷项数-首项

  项数=(末项-首项)/公差+1

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometric progression).这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示(q≠0).注:q=1时,an为常数列.

【高二数学知识点归纳:等差数列】相关文章:

高二数学知识点总结归纳必修08-04

小升初数学算术知识点归纳08-20

小升初数学小数知识点归纳08-16

小升初数学知识点归纳09-13

小升初数学必考知识点 归纳09-09

关于小升初数学数学知识点归纳07-12

小升初数学简单的统计的知识点归纳09-08

关于小升初数学小数的知识点归纳08-25

小升初数学数列求和知识点归纳05-31