考研资讯 百文网手机站

考研数学高数重要定理证明

时间:2022-01-26 15:43:46 考研资讯 我要投稿

考研数学高数重要定理证明汇总

  考研数学的高数是很多考生都比较头疼的一类题目,也是考察重点,我们需要了解清楚重要定理证明。小编为大家精心准备了考研数学高数重要定理证明指南,欢迎大家前来阅读。

考研数学高数重要定理证明汇总

  考研数学高数重要定理证明指导

  高数定理证明之微分中值定理:

  这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

  费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

  费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

  该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

  闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?

  前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

  那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

  拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

  以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

  高数定理证明之求导公式:

  2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

  当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。

  高数定理证明之积分中值定理:

  该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

  若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

  若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。

  接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

  高数定理证明之微积分基本定理:

  该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

  变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

  “牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

  该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

  注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

  考研数学冲刺线性代数常考的6大内容

  一、行列式部分,强化概念性质,熟练行列式的求法

  在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

  二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

  通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

  三、向量部分,理解相关无关概念,灵活进行判定

  向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的'命题。

  四、线性方程组部分,判断解的个数,明确通解的求解思路

  线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

  五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解

  矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

  六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理

  二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。

  考研数学全程三大阶段复习指导

  第一阶段:夯实基础阶段

  这个阶段主要是夯实基础,时间就是你开始备考的时间到2017的7月,每天3-4个小时,建议用一个上午、下午或者晚上的整块的时间来专门复习数学。

  复习应根据历年考研数学大纲要求结合教材对应章节系统进行,要打好基础,特别是对大纲中要求的三基--基本概念、基本理论、基本方法要系统理解和掌握,完成从大学学习到考研备战的基础准备。在这个阶段把基础打扎实,是考验数学取得好成绩的前提。这个阶段,建议大家分为两轮来复习。

  第一轮,精读材料:

  时间是开始-6月中旬。这一阶段主要是复习教材,按大纲要求结合教材对应章节全面复习,按章节顺序完成教材的课后习题,通过练习掌握教材知识和内容。小编建议同学们每天学习新内容前先温习下前面的内容。教材的编写是循序渐进的,所以我们也要按照规律来复习,经过必要的重复会起到事半功倍的效果。

  第二轮,练习测试以巩固基础知识:

  时间是6月中旬到7月中旬,约1个月时间。这一阶段主要是练习测试、巩固所学知识。建议大家使用教材配套的复习指导书或习题集,通过做题来巩固知识,在练习过程中遇上不懂或似懂非懂的题目要认真对待,多思考,不要一看不会就直接看答案,应当先查看教材相关章节,把相关知识点彻底搞懂。建议按要求完成练习测试后,还要对教材的内容进行梳理,对重点、难点做好笔记,以便于后面复习把它消化掉。

  第二阶段:强化巩固阶段

  这一阶段主要是巩固第一阶段的学习成果。时间从7月到11月初,约4个月时间,每天保证3小时以上。通过对辅导材料和真题的学习,了解考试难度和明确考试方向,进行专项复习提高自己的解题效率和质量。

  本阶段是考研复习的重点,对考研成绩起决定性作用。小编建议分为三轮学习。

  第一轮:学习时间是7月到8月底两个月,主要任务是完整的、认真研读一遍考研辅导书和分析2套考研真题,全面了解考查内容,熟悉考研数学的重点题型以及其解题方法。

  第二轮:大概用一个月的时间也就是9月10月初一个多月,主要考研辅导书与专项模拟题、真题或习题的复习,对考试重点题型和自己薄弱的内容进行攻坚复习。

  第三轮:本阶段的最后时间段,时间是10初到11月初。主要是学习笔记的梳理和套题的训练,检测你的解题速度和准确率,查漏补缺、薄弱加强,目的是巩固基础提高能力。

  第三阶段:决胜冲刺阶段

  这一阶段已经进入最后的冲刺了。时间从11月到考前,约二个月。小编认为在这一阶段,我们要通过对以往学习笔记的复习全面掌握考试要求,并进行高强度的冲刺题训练,进入考试状态,达到考试要求。要做到:

  1、通过做题进总结和梳理(做题训练应当重点放在按考试要求的套题上);

  2、复习知识点,对基本概念、基本公式、基本定理进行记忆,尤其是平常不常用的、记忆模糊的公式,经常出错的要重点记忆;

  3、保持水平和状态,复习和做题一定要坚持到考前;

  4、进行补缺补漏,轻松应考。

  对于以上三个阶段的学习,主要以自学为主。基础不好或者需要拿高分的同学生可以参加辅导班。每次辅导班上课之前,建议同学们把老师准备讲的内容先预习,这样听课的时候才能有所侧重,才能抓住重点。听课的时候不仅要听老师讲一些例题,更要听老师归纳总结的一些解题方法和技巧。

  一个阶段的复习结束后,同学们可以和周围的考生互相交流、互相切磋解题的方法和技巧,并适当做全面的总结。

【考研数学高数重要定理证明汇总】相关文章:

考研高数冲刺的重要定理如何证明12-22

考研数学高数有哪些中值定理的复习重点12-19

考研高数中值定理的复习方法12-20

考研数学高数的复习重点12-21

考研数学高数考试的重点12-05

考研数学高数复习的方法12-05

考研数学高数有哪些考点12-15

考研数学高数考点的预测12-15

考研数学高数复习的技巧12-12

高中数学重要公式定理证明方法汇总07-20