数学试题

人教版四年级数学下册知识点

时间:2025-04-14 20:12:11 志华 数学试题 我要投稿

人教版四年级数学下册知识点

  学习数学能使人们更合乎逻辑、更有条理、更严密、更精确、更深入地思考和解决问题。下面是应届毕业生小编为大家搜索整理的人教版四年级数学下册知识点,希望对大家学习有所帮助。

人教版四年级数学下册知识点

  四年级数学下册知识点 1

  第一单元知识点(四则运算)

  1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)

  2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)

  3. 算式里有括号,先算括号里面的,在算括号外面的。

  4. 加法、减法、乘法和除法统称四则运算。

  5. 一个数加上0还得原数,一个数减去0也得原数。

  6. 被减数等于减数,差是0。

  7. 一个数和零相乘,仍得0。

  8. 0除以一个非0的数,还得0。

  9. 0不能作除数。

  10. 在解决问题时,如果列综合算式,必须用脱式计算。

  11. 任何数除以0都得0。(×)因为0不能做除数。

  第二单元知识点(观察物体)

  1. 如何确定物体所在的位置?

  (1)明确方向。

  (2)明确距离。

  2.根据方向和距离来确定物体的位置。

  3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。

  4.平面图形的一般画法:

  (1)先确定某建筑物的方向。

  (2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)

  (3)最后确定距离。

  5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。

  第三单元知识点(运算定律)

  1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。

  用字母表示为:a+b=b+a

  2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)

  3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

  用字母表示为:a×b=b×a

  4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。

  用字母表示为:(a×b) ×c=a×(b×c)

  5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c

  6. 类似于乘法分配律的简便公式;

  (a-b)×c=a×c-b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)

  8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c

  括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c

  9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)

  10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:

  a×(b×c)=a×b×c a×(b÷c)=a×b÷c

  括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

  12. 另两种简便方法:

  (1) 把一个因数改写成两个一位数相乘的形式。

  (2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。

  第四单元知识点(小数的意义和性质)

  1. 在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。

  2. 分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。

  3. 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。

  4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。

  5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……

  6. 小数的读法:

  (1)先读整数部分,再读点,最后读小数部分。

  (2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。

  (3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。

  7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  8.利用小数的性质进行小数的化简和改写。

  例如:0.70=0.7 105.0900=105.09(这是小数的化简)

  又如:不改变数的大小,把下面各数写成三位小数

  0.2=0.200 4.08=4.080 3=3.000(这是改写小数)

  9.如何比较小数的大小?

  先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的'数相同,比较千分位上的数……

  10.小数点移动的规律:

  (1)小数点向右

  移动一位,小数就扩大到原数的10倍;

  移动两位,小数就扩大到原数的100倍;

  移动三位,小数就扩大到原数的1000倍;

  ……

  (2)小数点向左

  移动一位,小数就缩小到原数的1/10;

  移动两位,小数就缩小到原数的1/100;

  移动三位,小数就缩小到原数的1/1000;

  ……

  11.把量和单位名称合起来的数叫名数。

  12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……

  13.复名数:带有两个或两个以上的单位名称的名数。例如:

  20元5角8分 5吨600克……

  14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:

  (1)高到低,乘进率,小数点,向右移,移几位,看进率。

  例如:1.32千克=(1320 )克 (58 )厘米=0.58米

  1千克=1000克 1米=100厘米

  高→低 低←高

  1.32×1000=1320克 0.58×100=58厘米

  (2)低到高,用除法,小数点,向左移,移几位,看进率。

  例如:

  7450米=(7.45 )千米 (9.02)吨=9020千克

  1千米=1000米 1吨=1000千克

  低→高 高←低

  7450÷1000=7.45千米 9020÷1000=9.02吨

  15.求小数的近似数,可用“四舍五入”法。

  16.在表示近似数时,小数末尾的0不能去掉。

  17.求小数的近似数的方法:

  求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。

  例如:9.953≈ 10 (保留整数)

  9.953≈10.0 (保留一位小数)

  9.953≈9.95 (保留两位小数)

  23.4395≈23.440 (保留三位小数)

  18. 1.0比1精确。保留的位数越多,数就越精确。

  19.如何把一个数改写成以万为单位的数?

  方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。

  方法二:(1)先找万位;(2)在万位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。

  20.如何把一个数改写成以亿为单位的数?

  方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。

  方法二:(1)先找亿位;(2)在亿位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。

  注:对于改写的方法,同学们灵活掌握。

  21.下列各数中的“6”分别表示什么?

  6.32(表示6个一) 0.6(表示6个十分之一) 0.86(表示6个百分之一)

  62.32(表示6个十) 3.416(表示千分之一)

  22.三位小数一定小于四位小数。(×)例如:1.003﹥0.5678

  23.去掉小数点后面的0,小数的大小不变。(×)

  应该是去掉小数末尾的零,小数的大小不变。

  24.小数就是比1小的数。(×)例如:10.1﹥1

  25.近似数是0.5的两位小数有5个。(×)

  近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入” 法。)

  26.近似数4.0与精确数4.0末尾的0都可以去掉。(×)

  在表示近似数时,小数末尾的0不能去掉。

  27.小数的位数越多,数就越大。(×)

  28.小数都比自然数小。(×)

  29.整数都大于小数。(×)

  30.0.4与0.6之间的小数只有一个。(×)因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。

  方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。

  求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”, 千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。

  四年级数学下册知识点 2

  运算定律及简便运算

  一、加法运算定律:

  1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c

  加法的这两个定律往往结合起来一起使用。

  如:165+93+35=93+(165+35)依据是什么?

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c

  二、乘法运算定律:

  1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c

  乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

  (a+b)×c=a×c+b×c a-b×c=a×c-b×c

  鸡兔问题公式

  (1)已知总头数和总脚数,求鸡、兔各多少:

  (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的'脚数)=兔数;

  总头数-兔数=鸡数。

  或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

  总头数-鸡数=兔数。

  例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

  解一(100-2×36)÷(4-2)=14(只)………兔;

  36-14=22(只)……………………………鸡。

  解二(4×36-100)÷(4-2)=22(只)………鸡;

  36-22=14(只)…………………………兔。

  (答略)

  (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

  (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

  总头数-兔数=鸡数

  或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

  总头数-鸡数=兔数。(例略)

  (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

  (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

  总头数-兔数=鸡数。

  或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

  总头数-鸡数=兔数。(例略)

  (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

  (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

  例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

  解一(4×1000-3525)÷(4+15)

  =475÷19=25(个)

  解二1000-(15×1000+3525)÷(4+15)

  =1000-18525÷19

  =1000-975=25(个)(答略)

  (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

  (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

  〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

  〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

  例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

  解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

  =20÷2=10(只)……………………………鸡

  〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

  =12÷2=6(只)…………………………兔(答略)

  鸡兔同笼

  1、鸡兔同笼属于假设问题,假设的和最后结果相反。

  2、“鸡兔同笼”问题的解题方法

  假设法:

  ①假如都是兔

  ②假如都是鸡

  ③古人“抬脚法”:

  解答思路:

  假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

  3、公式:

  鸡兔总脚数÷2-鸡兔总数=兔的只数;

  鸡兔总数-兔的只数=鸡的只数。

  四则运算

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  5、先乘除,后加减,有括号,提前算

  关于“0”的运算

  1、“0”不能做除数; 字母表示:a÷0错误

  2、一个数加上0还得原数; 字母表示:a+0=a

  3、一个数减去0还得原数; 字母表示:a-0=a

  4、被减数等于减数,差是0; 字母表示:a-a=0

  5、一个数和0相乘,仍得0; 字母表示:a×0=0

  6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商; 5÷0得不到商.(无意义)

  四年级数学下册知识点 3

  【知识框架】

  小数乘法的意义 小数乘法的意义

  小数点移动引起小数大小变化的规律

  积的小数位数与乘数的小数位数的关系

  计算小数乘法 会用竖式计算小数乘法及估算

  小数的混合运算(整数运算定律完全适合小数)

  【知识要点】

  文具店(小数乘法的意义)

  通过具体情境教学使学生了解小数与整数相乘就是表示几个相同加数的和的简便运算。

  1、小数乘法的意义

  小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:一是同整数乘法的意义相同,即求相同加数的和的简便运算.二是求一个数的xxx几,百分之几……是多少.

  2、小数的计算法则

  计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如×看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积.因此,小数乘法的.关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如×,在8的前面补两个0,点上小数点后,整数部分也写一个0.

  小数点搬家(掌握小数点移动引起小数大小变化的规律)

  明白小数点向左移动一位,小数就缩小到原来的xxx一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推。小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推。

  街心广场(积的小数位数与乘数的小数位数的关系)

  积的小数位数与乘法的小数位数的关系:小数乘法中各个因数中小数的位数和就是这道题中积的小数的位数。

  包装(小数乘法2)

  小数乘小数计算方法,即将小数乘法转化为整数乘法进行计算。根据乘数扩大的倍数,将积缩小相同倍数,进一步体会到两个乘数共有几位小数,积就有几位小数。

  爬行最慢的哺乳动物(小数乘法3)

  进一步理解小数乘小数的计算方法即两个因数里共有几位小数,积就有几位小数;当其中的一个因数是整十数时,积中如果有一位小数,就在末尾画掉一个零……

  手拉手(小数的混合运算)

  小数四则混合运算的运算顺序与整数四则混合运算的顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律。等等。

  四年级数学下册知识点 4

  数学广角(植树问题)

  一、1.两头(两端)要栽:棵数=间隔数+1

  2.一头(一端)要栽:棵数=间隔数

  3.两头(两端)不栽:棵数=间隔数-1

  二、棋盘棋子数目:

  1.棋盘最外层棋子数:每边棋子数×边数-边数

  2.棋盘总的棋子数:每行棋子数×每列棋子数

  3.方阵最外层人数:每边人数×4-4

  4.多边形上摆花盆:每边摆的花盆数×边数-边数

  数学广角——鸽巢问题

  一、鸽巢问题

  1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。

  2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。

  二、鸽巢问题的`应用

  1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。

  2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。

  3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。

  4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。

  例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

  提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

  四年级数学下册知识点 5

  一、加减法运算定律:

  1、加法交换律:a+b=b+a

  2、加法结合律:(a+b)+c=a+(b+c)

  3、连减的性质: a-b-c=a-(b+c)。

  二、乘除法运算定律:

  1、乘法交换律:。a×b=b×a

  2、乘法结合律:(a×b)× c = a× (b×c )

  3、乘法分配律:

  (1)两个数的和与一个数相乘:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

  (2)两个数的.差与一个数相乘:(a-b)×c=a×c-b×c。

  4、除法的性质:a÷b÷c=a÷(b×c)。

  5、乘法分配律的应用:

  ①类型一:(a+b)×c= a×c+b×c (a-b)×c= a×c-b×c

  ②类型二:a×c+b×c=(a+b)×ca×c-b×c=(a-b)×c

  ③类型三:a×99+a = a×(99+1)a×b-a= a×(b-1)

  ④类型四:a×99 a×102

  = a×(100-1)= a×(100+2)

  = a×100-a×1 = a×100+a×2

  6、商不变性质:a÷b=(a×c)÷(b×c),a÷b=(a÷c)÷(b÷c)。

  三、简便计算

  ①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)

  四年级数学下册知识点 6

  【知识框架】

  1、图形分类(按不同标准给已知图形进行分类)

  三角形的分类(认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形)

  2、三角形 三角形内角和

  三角形三边之间的关系

  3、四边形的分类(初步认识梯形、进一步认识平行四边形)

  4、图案欣赏

  【知识要点】

  图形分类

  1、按照不同的标准给已知图形进行分类:

  (1)按平面图形和立体图形分;

  (2)按平面图形时否由线段围成来分的;

  (3)按图形的边数来分。通过自己动手分类,对图形进行再认识,了解图形的特征。

  2、了解平行四边形易变形和三角形的'稳定性在生活中的应用。

  三角形分类

  1、把三角形按照不同的标准分类,并说明分类依据。

  (1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形。

  (2)按边分,分为:等腰三角形、等边三角形、任意三角形。有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形。

  2、通过分类,使学生弄清等腰三角形和等边三角形的关系:等边三角形是特殊

  的等腰三角形。

  三角形内角和

  1、任意一个三角形内角和等于180度。

  2、 能应用三角形内角和的性质解决一些简单的问题。

  三角形边的关系

  1、 三角形任意两边之和大于第三边。

  2、根据上述知识点判断所给的已知长度的三条线段能否围成三角形。如果能围

  成三角形,能围成一个什么样的三角形。

  四边形的分类

  1、通过观察、比较、分类等活动,了解由四条线段围成的图形是四边形,四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。

  2、知道长方形、正方形是特殊的平行四边形。

  3、了解正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。

  图案 欣赏

  1、通过欣赏图案,体会图形排列的规律,感受图案的美。

  2、利用对称、平移和旋转,设计简单的图案。

【人教版四年级数学下册知识点】相关文章:

人教版四年级数学下册知识点汇总07-03

人教版小学四年级数学下册知识点07-03

人教版小学四年级数学下册知识点复习10-10

人教版四年级数学下册知识点总复习07-26

人教版五年级数学下册知识点复习11-21

人教版四年级语文下册知识点汇总07-02

人教版初三英语下册语法知识点10-17

人教版五年级下册数学知识点总结06-28

人教版三年级数学下册知识点梳理07-22