高三数学模拟试题
现如今,我们经常跟试题打交道,试题是参考者回顾所学知识和技能的重要参考资料。大家知道什么样的试题才是规范的吗?以下是小编为大家整理的高三数学模拟试题,仅供参考,欢迎大家阅读。

高三数学模拟试题 1
一、选择题:(8小题,每小题5分,共40分)
1.tan(-990°)=( )
A.0 B. C. D.不存在
2. 在一次运动员的选拔中,测得到7名选手身高(单位:cm)分布的茎叶图如图.已知记录的平均身高为174cm,但有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为 ( )
A.5 B.6 C.7 D.8
3.一几何体的正视图和侧视是全等的等腰梯形,上下底边长分别为2和4,腰长为 ,俯视图为二个同心圆,则该几何体的体积为( )
A.14π B. C. D.
4.定义:适合条件a>b的复数a+bi (a,b∈R)称为“实大复数”,若复数 为“实大复数”,则实数a的取值范围是( )
A.(-∞,0) B.(0,+∞) C.[0,+∞) D.(2,+∞)
5.在数列{an}中,a1=1,数列{anan+2}是以3为公比的等比数列,则log3a2011等于( )
A.1003 B.1004 C.1005 D.1006
6.某通信公司推出一组手机卡号码,卡号的前七位数字固定007,后四位从“0000”到“9999”共10000个号码,公司规定:凡卡号的后四位带数字“4”或“7”的一律作为“优惠”卡来销售,则这组号码中“优惠卡”的个数为( )
A.2000 B.4096 C.5904 D.8320
7.设双曲线 (a>0,b>0)的左、右焦点分别是F1、F2,过点F2的直线交双曲线右支于点M、N,若 =0, = ,则该双曲线的离心率为( )
A. B. C. D.
8.若函数y=f(x) (x∈R)满足f(x+1)+f(x)=1,当x∈[-1,1]时,f(x)=1-x2,函数g(x)= ,则函数h(x)=f(x)-g(x)在区间[-5,10]内的零点的.个数为( )
A.9 B.11 C.13 D.14
二、填空题:(7小题,每小题5分,共35分)
9.已知随机变量X~N(2,σ2)(σ>0),若X在(0,2)内取值的概率为0.3,则X在(4,+∞)内的概率为 。
10.当a=1,b=3时执行完右边这段程序后x的值是 。
11.已知函数f(x)=|x-k|+|x-2k|,若对任意的x∈R,f(x)≥f(3)=f(4)都成立,则k的取值范围为 。
12.已知函数 的定义域是非零实数,且在(-∞,0)上是增函数,在(0,+∞)上是减函数,则最小的自然数a等于 。
13.已知:如下图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D、E两点,过点E作EF⊥CD交CB延长线于点F,若CD=2,CB=2 ,则CE= ,EF= 。007
14.已知点O在△ABC内部,且满足 ,向△ABC内任抛一点M,则点M落在△AOC内的概率为 。
15.某资料室在计算机使用中,如下表所示以一定规则排列的编码,且从左至右以及从上到下都是无限的,此表中,主对角线上数列1,2,5,10,17,…的通项公式为 ,编码100共出现 次。
三、解答题:(6小题,第16,17,18题每题12分,第19,20,21题每题13分,共75分)
16.已知函数f(x)=sinx+cosx,f `(x)是f(x)的导函数。
⑴ 求函数F(x)=f(x)f`(x)+[f(x)]2的最大值和最小正周期;
⑵ 若f(x)=2f`(x),求 的值。
17.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
⑴求分数在[70,80)内的频率,并补全这个频率分布直方图;
⑵统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
⑶若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望。
18.如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的侧面积与△ABE的面积之比等于4π. 007
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求二面角A―BD―E的正弦值.
19.某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为 万元(m>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.
(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
20.在直角坐标系xOy中,椭圆C1: 的左、右焦点分别为F1、F2,其中右焦点F2也是抛物线C2:y2 = 4x的焦点,点M为C1与C2在第一象限的交点,且|MF2| = .
(1)求椭圆C1的方程;
(2)设 ,是否存在斜率为k (k≠0)的直线l与椭圆C1交于A、B两点,且|AE| = |BE|?若存在,求k的取值范围;若不存在,请说明理由.
21.已知 ,其中x∈R, 为参数,且0≤ ≤ 。
(1)当cos =0时,判断函数 是否有极值;
(2)要使函数 的极小值大于零,求参数 的取值范围;
(3)若对(2)中所求的取值范围内的任意参数 ,函数 在区间(2a – 1, a)内都是增函数,求实数a的取值范围。
高三数学模拟试题 2
一、选择题:共10小题,每小题4分,共40分
1、在空间直角坐标系中,方程2+3y2+3×2=1表示的曲面是( ).
A.球面B.柱面C.锥面D.椭球面
2.设函数f(x)=2sinx,则f′(x)等于( ).
A.2sinx B.2cosx C.-2sinx D.-2cosx
3.设y=lnx,则y″等于( ).
A.1/x B.1/x2C.-1/xD.-1/x2
4.方程z=x2+y2表示的二次曲面是( ).
A.球面B.柱面C.圆锥面D.抛物面
5.设y=2×3,则dy=( ).
A.2x2dx B.6x2dx C.3x2dxD.x2dx
6.微分方程(y′)2=x的阶数为( ).
A.1 B.2 C.3 D.4
7.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为( ).
A.x+y+z=1 B.2x+y+z=1 C.x+2y+z=1 D.x+y+2z=1
8.曲线y=x3+1在点(1,2)处的切线的斜率为( ).
A.1 B.2 C.3 D.4
9.设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)( ).
A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点
10.设Y=e-3x,则dy等于( ).
A.e-3xdx B.-e-3xdx C.-3e-3xdx D.3e-3xdx
二、填空题:共10小题,每小题4分,共40分。
11、将ex展开为x的幂级数,则展开式中含x3项的系数为_____.
12、设y=3+cosx,则y′_____.
13、设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.
14、设函数z=ln(x+y2),则全微分dz=_______.
15、过M设y=f(x)在点x=0处可导,且x=0为f(x)的极值点,则f′(0)=_____.
16、 (1,-l,2)且垂直于平面2x-y+3z-1=0的直线方程为_____.
17、微分方程y′=0的通解为_____.
18、过M(1,-l,2)且垂直于平面2x-y+3z-1=0的`直线方程为_____.
19、设y=2×2+ax+3在点x=1取得极小值,则a=_____.
20、微分方程xyy′=1-x2的通解是_____.
三、解答题:共8小题,共70分。
21、求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
22、设z=z(x,Y)是由方程z+y+z=ez所确定的隐函数,求dz.
23、求函数f(x)=x3-3x+1的单调区间和极值.
24、设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.
25、求微分方程y”-y′-2y=3ex的通解.
26、设F(x)为f(x)的一个原函数,且f(x)=xlnx,求F(x).
27、设F(x)为f(x)的一个原函数,且f(x)=xlnx,求F(x). 28、设y=x+sinx,求y′>25、求微分方程y”-y′-2y=3ex的通解。
【高三数学模拟试题】相关文章:
2015届高三数学模拟试题08-13
2015年高三数学模拟试题及答案07-26
中考数学模拟试题07-26
小升初数学模拟试题及答案09-21
小升初数学模拟试题大全10-02
小升初数学模拟试题附答案09-03
苏教版小升初数学模拟试题及答案07-20
2017小升初数学模拟试题09-16
2017年精选天津小升初数学模拟试题10-04