初一上册数学期末试卷及答案
学了一个学期,是否真的将老师传授的知识学会了呢?一起来做一套试题测试一下吧。下面是小编带来的初一上册数学的期末试卷及答案,希望能对大家有帮助!

初一上册数学期末试卷及答案 1
一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)
1. 已知等式3a=2b+5,则下列等式中不一定成立的是( )
A. 3a﹣5=2b B. 3a+1=2b+6 C. 3ac=2bc+5 D. a=
2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是( )
A. 两点之间,线段最短
B. 两点确定一条直线
C. 线段只有一个中点
D. 两条直线相交,只有一个交点
3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量( )
A. (5+8)x B. x÷(5+8) C. x÷(+) D. (+)x
4. 下列说法正确的是( )
A. 射线OA与OB是同一条射线 B. 射线OB与AB是同一条射线
C. 射线OA与AO是同一条射线 D. 射线AO与BA是同一条射线
5. 下列说法错误的是( )
A. 点P为直线AB外一点
B. 直线AB不经过点P
C. 直线AB与直线BA是同一条直线
D. 点P在直线AB上
6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是( )
A. B. C. D.
7. 的值与3(1﹣x)的值互为相反数,那么x等于( )
A. 9 B. 8 C. ﹣9 D. ﹣8
8. 海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的( )
A. 南偏西50° B. 南偏西40° C. 北偏东50° D. 北偏东40°
9. 把10.26°用度、分、秒表示为( )
A. 10°15′36″ B. 10°20′6″ C. 10°14′6″ D. 10°26″
二、耐心填一填,你一定很棒!(每题3分,共21分)
10. 一个角的余角为68°,那么这个角的补角是 度.
11. 如图,AB+BC>AC,其理由是 .
12. 已知,则2m﹣n的值是 .
13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解 .
14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m= ,n= .
15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的 .(把下图中正确的立体图形的序号都填在横线上)
16. “横看成岭侧成峰,远近高低各不同”是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是 体.
三.挑战你的技能
17.
18. 已知是方程的根,求代数式的值.
19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?
21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.
22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)
(2)记(1)中的角为∠AOB,OC平分∠AOB,D在射线OA的反向延长线上,画图并求∠COD的度数.
23. 如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.
24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.
(1)请完成下表:
第1排座位数 第2排座位数 第3排座位数 第4排座位数 … 第n排座位数
12 12+a …
(2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?
参考答案与试题解析
一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)
1. 已知等式3a=2b+5,则下列等式中不一定成立的是( )
A. 3a﹣5=2b B. 3a+1=2b+6 C. 3ac=2bc+5 D. a=考点: 等式的性质.
分析: 利用等式的性质:①等式的两边同时加上或减去同一个数或同一个整式,所得的结果仍是等式;②:等式的.两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,对每个式子进行变形即可找出答案.
解答: 解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;
B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;
D、根据等式的性质2:等式的两边同时除以3,得a=;
C、当c=0时,3ac=2bc+5不成立,故C错.
故选:C.
点评: 本题主要考查了等式的基本性质,难度不大,关键是基础知识的掌握.
2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是( )
A. 两点之间,线段最短
B. 两点确定一条直线
C. 线段只有一个中点
D. 两条直线相交,只有一个交点
考点: 直线的性质:两点确定一条直线.
分析: 根据概念利用排除法求解.
解答: 解:经过两个不同的点只能确定一条直线.
故选B.
点评: 本题是两点确定一条直线在生活中的应用,数学与生活实际与数学相结合是数学的一大特点.
3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量( )
A. (5+8)x B. x÷(5+8) C. x÷(+) D. (+)x
考点: 列代数式.
分析: 根据工作效率×工作时间=工作总量等量关系求出结果.
解答: 解:甲的工作效率是,乙的工作效率是,工作总量是1,
∴两人合做x天完成的工作量是(+)x.
故选D.
点评: 列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系,注意工作总量是1.
4. 下列说法正确的是( )
A. 射线OA与OB是同一条射线 B. 射线OB与AB是同一条射线
C. 射线OA与AO是同一条射线 D. 射线AO与BA是同一条射线
考点: 直线、射线、线段.
分析: 根据射线的概念,对选项一一分析,排除错误答案.
解答: 解:A、射线OA与OB是同一条射线,选项正确;
B、AB是直线上两个点和它们之间的部分,是线段不是射线,选项错误;
C、射线OA与AO是不同的两条射线,选项错误;
D、BA是直线上两个点和它们之间的部分,是线段不是射线,选项错误.
故选A.
点评: 考查射线的概念.解题的关键是熟练运用概念.
5. 下列说法错误的是( )
A. 点P为直线AB外一点
B. 直线AB不经过点P
C. 直线AB与直线BA是同一条直线
D. 点P在直线AB上
考点: 直线、射线、线段.
分析: 结合图形,对选项一一分析,选出正确答案.
解答: 解:A、点P为直线AB外一点,符合图形描述,选项正确;
B、直线AB不经过点P,符合图形描述,选项正确;
C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;
D、点P在直线AB上应改为点P在直线AB外一点,选项错误.
故选D.
点评: 考查直线、射线和线段的意义.注意图形结合的解题思想.
6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是( )
A. B. C. D.
考点: 简单组合体的三视图.
分析: 找到从上面看所得到的图形即可.
解答: 解:从上面看可得到从上往下2行的个数依次为3,2.
故选D.
点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
7. 的值与3(1﹣x)的值互为相反数,那么x等于( )
A. 9 B. 8 C. ﹣9 D. ﹣8
考点: 一元一次方程的应用.
专题: 数字问题.
分析: 互为相反数的两个数的和等于0,根据题意可列出方程.
解答: 解:根据题意得:2(x+3)+3(1﹣x)=0,
解得,x=9.
那么x等于9.
故选A.
点评: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
8. 海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的( )
A. 南偏西50° B. 南偏西40° C. 北偏东50° D. 北偏东40°
考点: 方向角.
分析: 根据方向角的定义即可判断.
解答: 解:海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的南偏西40°.
故选B.
点评: 本题
主要考查了方向角的定义,正确理解定义是关键.
9. 把10.26°用度、分、秒表示为( )
A. 10°15′36″ B. 10°20′6″ C. 10°14′6″ D. 10°26″
考点: 度分秒的换算.
专题: 计算题.
分析: 两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.度、分、秒的转化是60进位制.
解答: 解:∵0.26°×60=15.6′,0.6′×60=36″,
∴10.26°用度、分、秒表示为10°15′36″.
故选A.
点评: 此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.
二、耐心填一填,你一定很棒!(每题3分,共21分)
10. 一个角的余角为68°,那么这个角的补角是 158 度.
考点: 余角和补角.
专题: 计算题.
分析: 先根据余角的定义求出这个角的度数,进而可求出这个角的补角.
解答: 解:由题意,得:180°﹣(90°﹣68°)=90°+68°=158°;
故这个角的补角为158°.
故答案为158°.
点评: 此题属于基础题,主要考查余角和补角的定义.
11. 如图,AB+BC>AC,其理由是 两点之间线段最短 .
考点: 线段的性质:两点之间线段最短.
分析: 由图A到C有两条路径,知最短距离为AC.
解答: 解:从A到C的路程,因为AC同在一条直线上,两点间线段最短.
点评: 本题主要考查两点之间线段最短.
12. 已知,则2m﹣n的值是 13 .
考点: 非负数的性质:偶次方;非负数的性质:绝对值.
分析: 本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出方程求出m、n的值,代入所求代数式计算即可.
解答: 解:∵;
∴3m﹣12=0,+1=0;
解得:m=4,n=﹣5;
则2m﹣n=2×4﹣(﹣5)=13.
点评: 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解 x+2=0(答案不唯一) .
考点: 同解方程.
专题: 开放型.
分析: 根据题意首先求出方程11x﹣2=8x﹣8的解x=﹣2,然后再写出一个解为x=﹣2的方程即可.
解答: 解:11x﹣2=8x﹣8
移项得:11x﹣8x=﹣8+2
合并同类项得:3x=﹣6
系数化为1得:x=﹣2,解为x=﹣2的一个方程为x+2=0.
点评: 本题是一道开放性的题目,写一个和已知方程的解相同的方程,答案不唯一.
14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m= 4 ,n= 3 .
考点: 合并同类项.
专题: 应用题.
分析: 本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,只有同类项才可以合并的由同类项的定义可求得m和n的值.
解答: 解:由同类项定义可知:
m=4,n﹣1=2,
解得m=4,n=3,
故答案为:4;3.
点评: 本题考查了同类项的定义,只有同类项才可以进行相加减,而判断同类项要一看所含有的字母是否相同,二看相同字母的指数是否相同,难度适中.
15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的 ①②④ .(把下图中正确的立体图形的序号都填在横线上)
考点: 由三视图判断几何体.
专题: 压轴题.
分析: 根据图1的正视图和左视图,可以判断出③是不符合这些条件的因此原立体图形可能是图2中的①②④.
解答: 解:如图,主视图以及左视图都相同,故可排除③,因为③与①②④的方向不一样,故选①②④.
点评: 本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.
16. “横看成岭侧成峰,远近高低各不同”是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是 圆锥 体.
考点: 由三视图判断几何体.
分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
解答: 解:俯视图是圆的有球,圆锥,圆柱,从正面看是三角形的只有圆锥.
点评: 考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
三.挑战你的技能
17.
考点: 解一元一次方程.
专题: 计算题.
分析: 将方程去分母,去括号,然后将方程移项,合并同类项,系数化为1,即可求解.
解答: 解:去分母,得
3(x+4)+15=15x﹣5(x﹣5)
去括号,得
3x+12+15=15x﹣5x+25
移项,合并同类项,得
﹣7x=﹣2
系数化为1,得
x=.
点评: 此题主要考查学生对解一元一次方程的理解和掌握,此题难度不大,属于基础题.
18. 已知是方程的根,求代数式的值.
考点: 一元一次方程的解;整式的加减—化简求值.
专题: 计算题.
分析: 此题分两步:(1)把代入方程,转化为关于未知系数m的一元一次方程,求出m的值;
(2)将代数式化简,然后代入m求值.
解答: 解:把代入方程,
得:﹣=,
解得:m=5,
∴原式=﹣m2﹣1=﹣26.
点评: 本题计算量较大,求代数式值的时候要先将原式化简.
19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
考点: 方向角.
分析: 根据方位角的概念,画图正确表示出方位角,即可求解.
解答: 解:根据题意作图即可.
点评: 解答此类题需要从运动的角度,正确画出方位.
20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?
考点: 一元一次方程的应用.
专题: 销售问题.
分析: 设进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.
解答: 解:设进价为x元,
依题意得:900×90%﹣40﹣x=10%x,
整理,得
770﹣x=0.1x
解之得:x=700
答:商品的进价是700元.
点评: 应识记有关利润的公式:利润=销售价﹣成本价.
21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.
考点: 比较线段的长短.
专题: 计算题.
分析: (1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度;
(2)与(1)同理,先用AC、BC表示出MC、CN,MN的长度就等于AC与BC长度和的一半.
解答: 解:(1)∵点M、N分别是AC、BC的中点,
∴CM=AC=4cm,CN=BC=3cm,
∴MN=CM+CN=4+3=7cm;
(2)同(1)可得CM=AC,CN=BC,
∴MN=CM+CN=AC+BC=(AC+BC)=a.
点评: 本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.
22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)
(2)记(1)中的角为∠AOB,OC平分∠AOB,D在射线OA的反向延长线上,画图并求∠COD的度数.
考点: 余角和补角;角平分线的定义;角的计算.
专题: 作图题.
分析: 首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.
解答: 解:
(1)设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x);
根据题意可得:(180°﹣x)=5(90°﹣x)
解得x=67.5°,即x=67°30′.
故这个角等于67°30′;
(2)如图:∠AOB=67.5°,OC平分∠AOB,则∠AOC=×67.5°=33.75°;
∠COD与∠AOC互补,故∠COD=180°﹣33.75°=146.25°,即146°15′.
点评: 此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.
23. 如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.
考点: 角平分线的定义.
专题: 计算题.
分析: 由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.
解答: 解:∵∠AOB=110°,∠COD=70°
∴∠AOC+∠BOD=∠AOB﹣∠COD=40°
∵OA平分∠EOC,OB平分∠DOF
∴∠AOE=∠AOC,∠BOF=∠BOD
∴∠AOE+∠BOF=40°
∴∠EOF=∠AOB+∠AOE+∠BOF=150°.
故答案为:150°.
点评: 解决本题的关键利用角平分线定义得到所求角的两边的角的度数.
24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.
(1)请完成下表:
第1排座位数 第2排座位数 第3排座位数 第4排座位数 … 第n排座位数
12 12+a 12+2a 12+3a … 12+(n﹣1)a
(2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?
考点: 规律型:图形的变化类.
分析: (1)根据已知即可表示出各排的座位数;
(2)根据第15排座位数是第5排座位数的2倍列等式,从而可求得a的值,再根据公式即可求得第15排的座位数.
解答: 解:(1)如表所示:
第1排座位数 第2排座位数 第3排座位数 第4排座位数 … 第n排座位数
12 12+a 12+2a 12+3a … 12+(n﹣1)a
(2)依题意得:
12+(15﹣1)a=2[12+(5﹣1)a],
解得:a=2,
∴12+(15﹣1)a=12+(15﹣1)×2=40(个)
答:第十五排共有40个座位.
点评: 此题主要考查学生对规律型题的掌握情况,注意找出规律,进一步利用规律解决问题.
初一上册数学期末试卷及答案 2
一.选择题(共10小题)
1.如图,该几何体的俯视图是( )
A. B. C. D.
2.有理数a,b在数轴上的位置如图所示,则下列结论正确的是( )
A.b﹣a>0 B.a+b>0 C.﹣a﹣b<0 D.﹣b+a>0
3.下列说法正确的是( )
A.是单项式 B.多项式2x﹣3xy﹣1的常数项是﹣1
C.0不是整式 D.单项式的系数是,次数是4
4.若|x﹣1|+|y+2|=0,则5x﹣2y的值为( )
A.﹣9 B.3 C.9 D.﹣1
5.在一张日历表中,任意涂出一个竖列上相邻的三个数,则这三个数的和可能是( )
A.38 B.40 C.51 D.62
6.如图,点D是线段AB的中点,若AB=16,AC=10,则CD的长度为( )
A.2 B.3 C.5 D.6
7.如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF的度数是( )
A.25° B.30° C.40° D.50°
8.若代数2x2+3x的值为5,则代数式4x2+6x﹣9的值是( )
A.1 B.﹣1 C.4 D.﹣4
9.已知数a,b,c在数轴上的位置如图,下列说法:
①a+b﹣c>0;②ab+ac>0;③;④|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.
其中正确结论序号是( )
A.①④ B.②③ C.②③④ D.①③④
10.一列火车正在匀速行驶,它先用26s的时间通过了一条长256m隧道(即从车头进入入口到车尾离开出口),又用16s的时间通过了一条长96m隧道,则这列火车长( )米.
A.120 B.140 C.160 D.180
二.填空题(共8小题)
11.2024年国庆假期,南昌地铁累计运送乘客1311万人次,刷新国庆历史最高纪录,1311万用科学记数法表示为 .
12.一个棱柱有12条棱,那么它共有 个顶点、 个面.
13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺40本.则这个班
有 名学生.
14.已知a,b互为相反数,m,n互为倒数,则式子的值为 .
15.如图,已知∠AOC:∠BOC=1:3,OD平分∠AOB,且∠COD=36°,∠AOB= .
16.多项式4x2﹣3x+7与多项式5x3+(m﹣2)x2﹣2x+3相减后,结果不含x2项,则常数m的值为 .
17.一桶油,第一天用去全部油的25%,第二天用去20千克,这时用去的油与剩下的油之比为3:5,则此时还剩
下 千克油.
18.如图,OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,已知∠AOC=80°,那么∠MON的'大小等于 °.
三.解答题(共9小题)
19.计算:
(1); (2);
; (4).
20.解方程:
(1)8x﹣3(3x+2)=6; (2)3(x﹣2)=2﹣5(x+2);
; (4).
先化简,再求值:5(a2+b)﹣2(b+2a2)+2b,其中a=2,b=﹣1.
22.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行情况记录如下(单位:千米):10,﹣9,﹣5,+7,﹣11,+2,﹣10,+6.
(1)B地在A地哪个方向,距离为多少?
(2)若冲锋舟每千米耗油0.5升,出发时油箱有油25升,求途中至少还需补充多少升油?
23.一个班女生比男生的多4人,如果男生减少3人,女生增加4人,那么男、女生人数恰好相等,这个班原有男、女生各多少人?(列方程解答)
24.如图,已知点C为线段AB上一点,AC=12cm,CB=8cm,D、E分别是AC、AB的中点.求:
(1)求AD的长度;
(2)求DE的长度;
(3)若M在直线AB上,且MB=6cm,求AM的长度.
25.已知∠AOB内部有三条射线OD,OC,OE且在同一个平面内,∠AOC=2∠BOC,射线OD始终在射线OE的上方,∠AOB=108°,∠DOE=36°.
(1)如图1,当OE平分∠BOC时,求∠AOD的度数;
(2)如图2,若∠AOD=5∠COE时,求∠BOE的度数.
26.如图,在数轴上A点表示数a,B点表示数b,a、b满足|a+6|+(b﹣12)2=0.点P从点A出发以每秒2个单位长度的速度在数轴上向右运动,若在点B处放一挡板(挡板厚度忽略不计),点P在碰到挡板后立即返回,以每秒3个单位长度的速度在数轴上向左运动,设点P活动的时间为t(秒)(t>0).
(1)点A表示的数为 ,点B表示的数 .
(2)当点P碰到挡板时,t的值为 .
(3)当t=5时,点P表示的有理数为 ;当t=11时,点P表示的有理数为 ;
(4)试探究:点P到挡板的距离与它到原点的距离可能相等吗?若能,求出相等时t的值;若不能,请说明理由.
(5)当点P碰到挡板的同时,挡板从点B以每秒1个单位长度的速度在数轴上向左运动,直接写出点P在整个运动过程中到挡板的距离是它到原点距离的2倍时t的值.
27.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?
(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系.
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?直接写出结论即可.
参考答案
一.选择题(共10小题)
1.C.
2.A.
3.B.
4.C.
5.C.
6.A.
7.C.
8.A.
9.C.
10.C.
二.填空题(共8小题)
11.1.311×107.
12.8,6.
13.30.
14.﹣2024.
15.144°.
16.6.
17.100.
18.40°.
三.解答题(共9小题)
19.解:(1)
=
=
=
=;
(2)
=﹣3×××2
=﹣××2
=﹣×2
=﹣9;
(3)
=
=5﹣(2﹣20+9)
=5﹣(﹣18+9)
=5﹣(﹣9)
=5+9
=14;
(4)
=
=﹣27﹣15×+2
=﹣27﹣3+2
=﹣28.
20.解:(1)去括号,8x﹣9x﹣6=6,
移项,8x﹣9x=6+6,
合并同类项,﹣x=12,
系数化1,x=﹣12;
(2)3(x﹣2)=2﹣5(x+2),
去括号,3x﹣6=2﹣5x﹣10,
移项,3x+5x=2﹣10+6,
合并同类项,8x=﹣2,
系数化1,;
(3)去分母,3(3y﹣1)﹣12=2(5y﹣7),
去括号,9y﹣3﹣12=10y﹣14,
移项,9y﹣10y=12+3﹣14,
合并同类项,﹣y=1,
系数化1,y=﹣1;
(4)去分母,3(x﹣1)﹣12=2(2x+3)+4(x+1),
去括号,3x﹣3﹣12=4x+6+4x+4,
移项,3x﹣4x﹣4x=3+6+12+4,
合并同类项,﹣5x=25,
系数化1,x=﹣5.
21.解:原式=5a2+5b﹣2b﹣4a2+2b
=a2+5b,
当a=2,b=﹣1时,
原式=4﹣5
=﹣1.
22.解:(1)10﹣9﹣5+7﹣11+2﹣10+6=﹣10;
∴B地在A地的西面,距离10千米处;
(2)(10+9+5+7+11+2+10+6)×0.5﹣25=5(升).
答:至少还需补充5升油.
23.解:设这个班原有男生x人,则原有女生人,
则,
x﹣x=4+4+3,
解得x=33,
×33+4
=22+4
=26(人).
答:这个班原有男生33人,则原有女生26人.
24.解:(1)由线段中点的性质,AD=AC=6(cm);
(2)由线段的和差,得AB=AC+BC=12+8=20(cm),
由线段中点的性质,得AE==10(cm),
由线段的和差,得DE=AE﹣AD=10﹣6=4(cm);
(3)当M在点B的右侧时,AM=AB+MB=20+6=26(cm),
当M在点B的左侧时,AM=AB﹣MB=20﹣6=14(cm),
∴AM的长度为26cm或14cm.
25.解:(1)∵∠AOC=2∠BOC,∠AOB=108°,
∴,
∵OE平分∠BOC,
∴,
∴∠DOC=∠DOE﹣∠COE=18°,
∴∠AOD=∠AOC﹣∠DOC=54°;
(2)由(1)可得:∠AOC=72°,∠BOC=36°,
设∠BOE=x°,
当OE在OC的上方时,∠COE=(x﹣36)°,
∴∠COD=∠DOE+∠COE=x°,
∴∠AOD=∠AOC﹣∠DOC=(72﹣x)°,
由∠AOD=5∠COE可得(72﹣x)°=5×(x﹣36)°,
解得x=42,即∠BOE=42°;
当OE在OC的下方时,则∠COE=(36﹣x)°,
∴∠COD=∠DOE﹣∠COE=x°,
∴∠AOD=∠AOC﹣∠DOC=(72﹣x)°,
由∠AOD=5∠COE可得(72﹣x)°=5×(36﹣x)°,
解得x=27,即∠BOE=27°;
综上,∠BOE的度数为42°或27°.
26.解:(1)依题意,由|a+6|+(b﹣12)2=0,
∴a+6=0,b﹣12=0,∴a=﹣6,b=12;
∴点A表示的数为﹣6,点B表示的数为12
;故答案为:﹣6,12;
(2)依题意可得:[12﹣(﹣6)]÷2=9秒,
∴当点P碰到挡板时,t的值为9,
故答案为:9;
(3)当t=5时,点p表示的数为:﹣6+2x5=4,当t=12时,
由(2)可知点P运动9秒后碰到挡板,
∴点p表示的数为:12﹣3x(11﹣9)=6,
故答案为:4,6;
(4)能,①当点P碰到挡板之前,点p表示的数为﹣6+2t,
当点p在原点和挡板中间时,满足题意,即:﹣6+2t=6,
解得:t=6,
②当点P碰到挡板之后,点p表示的数为:12﹣3(t﹣9)=39﹣3t,
当点p在原点和挡板中间时,
满足题意,即:39﹣3t=6,
解得:t=11,
综上:t=6或t=11;
(5)①当点P碰到挡板之前,点p表示的数为﹣6+2t,
由题意得:2|﹣6+2t|=12﹣(﹣6+2t),
解得:t=5或t=﹣3(舍去),
②当点P碰到挡板返回时:点p表示的数为:12﹣3(t﹣9)=39﹣3t,
挡板表示的数为:12﹣(t﹣9)=21﹣t,
由题意得:2|39﹣3t|=21﹣t﹣39+3t,
解得:t=12或t=15,
综上:t=5或t=12或t=15.
27.解:(1)如图1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°,
∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°.
(2)如图2,∠MON=α,
理由是:∵∠AOB=α,∠BOC=60°,
∴∠AOC=α+60°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°,
∴∠MON=∠MOC﹣∠NOC=α.
(3)如图3,∠MON=α,与β的大小无关.
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=∠AOC=(α+β),
∠NOC=∠BOC=β,
∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.
∴∠MON=∠MOC﹣∠NOC
=(α+β)﹣β=α,
即∠MON=α.
【初一上册数学期末试卷及答案】相关文章:
数学初一年级上册期末试卷及答案04-10
初一数学上册期末试卷01-27
初一上册英语期末试卷附答案05-09
2017年初一上册数学期末试卷带答案评析05-28
2016初一年级上册数学期末试卷及答案02-28
初一英语上册期末试卷01-01
初二语文上册期末试卷及答案04-08
六年级上册期末试卷及答案2016数学05-21
初二语文上册期末试卷(附答案)02-21