《圆的面积》教学设计
作为一名默默奉献的教育工作者,编写教学设计是必不可少的,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么写教学设计需要注意哪些问题呢?以下是小编整理的《圆的面积》教学设计,仅供参考,大家一起来看看吧。

《圆的面积》教学设计1
一、教材内容:
本节课内容是求圆的面积
二、教学目标:
知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、
能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三、教学重点难点:
重点:圆的面积公式的推导过程以及圆的面积公式的应用。
难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的'理解。
四、教学流程
1、复习迁移,做好铺垫
师问:
(1)长方形面积公式
(2)平行四边形面积公式
师:平行四边形面积公式的求法是借住谁来推导出来的?
2、创设情景,引入课题
用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?
问题:
(1)小牛能够吃草的最大面积是一个什么图形?
(2)如何求圆的面积呢?
3、师生互动,探索新知
(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?
(2)让学生动手操作:
教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。
(3)让学生转化的过程进行展示。(略)(多组学生展示)
(4)用多媒体进行验证。
让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。
师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(5)引导归纳:
思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
思考2:长方形的长、宽与圆有什么关系呢?
再次多媒体展示动画。
师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,
即:圆的面积=长方形的面积=长×宽=πr×r
得到:s圆=πr×r
师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。
4、实际应用,强化新知
(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?
师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。
(2)出示例题:
例题1:已知一个圆的直径为24分米,求这个圆的面积?
a、让学生独立练习,b、指名板演,c、师生评议。
例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)
a、学生独立练习,b、指名板演,c、师生订正。
师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。
5、巩固练习,深化新知
1、判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()
(2)半径为2厘米的圆的周长与面积相等。()
2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少
6、课内总结,梳理新知
师:(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
7、布置作业
《圆的面积》教学设计2
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:
推导出圆的面积公式及其应用。
教学难点:
圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的.拼图对比挂图
教学过程:
一、以新引旧、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。
5、转化后的图形与原来的图形面积相等吗?
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容
《圆的面积》教学设计3
教学内容:人教版六数上第66页、67页
教学目标:
1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.
2.会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆
教学过程:
(课前游戏)
猜谜:前面有一片草地(打一植物)
草地上来了一群羊(打一水果)
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、 导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、 认识圆的面积:
1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的.面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1.(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多
少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、 小组合作、拼摆。
1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222
2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3. 汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、 面积计算公式推导:
1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2.师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、 巩固练习。
1. 平方的口算练习。
1 2 3 4 5 6 7 8 9 10 20 3022222222222 2
2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3.圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4. 树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、 总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
《圆的面积》教学设计4
教学目标
1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点
教学重点:源面积计算公式的退到。
教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。
教学过程
一、情景导入
1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?
所有的草坪铺满将是一个什么形状?
那么求这个圆形草坪的占地面积就是求什么了?
引导学生说出求这个圆形草坪的占地面积就是求圆的面积
这节课我们就来研究圆的面积。
板书:圆的面积
师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?
二、导入新课
1、师生总结板书?圆的面积与什么有关?
?圆的面积怎么求?
?圆的面积有没有计算公式?
2、师:看着老师手中两个不同大小的圆,是什么决定着他们的大小,那么可想而知,圆的面积大小与什么有关系?
引导学生猜想说出圆的`面积与半径有关
板书:圆的面积与半径r有关
师:到底是不是这样的了,接下来我们就来进行深入的探究。探究之前,请同学们回忆一下平行四边形的面积公式是什么?我们是怎样推导出他的面积公式的?对于三角形和平行四边形也是运用同样的方法推导出他们的公式的
师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。
板书:拼切——转化——化未知为已知
师:那么你们可以把这种转化的思想运用于求圆的面积上吗?
生:可以(不可以)
师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。
师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。
首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。
(平行四边形)
第二次把它等分成16份,在拼接在一起,它更想什么了?接着把她等分成32份,拼接起来,你发现了什么规律?
师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。
板书:近似
三、推导圆的公式
师:我们已经成功地花园为方,看看数学方式就是这么神奇,但是圆的面积公式还是不知道。请同学们看着你们手中拼接好的圆以同桌为组思考这几个问题:?圆的面积和这个近似长方形的面积有什么关系?
拼成的近似长方形的长和宽与圆的周长、半径有什么关系?
你能以计算长方形的面积推导出计算圆的面积公式吗,尝试用“因为……根据……所以……”类似这样的关联词,把你的想法在小组中发展出来。板书:因为圆形的面积=长方形的面积=长×宽=1/2周长×半径
所以圆的面积=R×RS=R
这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。
练习题
1、求出下列圆的面积:
2、圆形草坪的直径是20米,它的面积是多少平方米?
3、练习十
六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
四、总结
通过刚刚的练习题,我们知道了哪些条件就可以求出圆的面积了?通过这节课的学习,咱们都学会了哪些知识?
《圆的面积》教学设计5
一、学习目标:
1、通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能利用公式进行简单的面积计算,会解决简单的实际问题。
3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
重点:
圆的面积公式的推导及应用公式计算。
难点:
圆面积公式的推导过程。
二、教学准备:
教学课件
分成不同等份的圆形卡纸、纸板、胶棒
三、教学过程:
(一)、复习铺垫,导入新课:
1、看到老师手中的圆,你能想到有关圆的什么知识?
学生汇报。
2、你们还想知道圆的什么知识?
学生交流。
3、那你知道什么是圆的面积吗?
学习圆的面积的概念。
请学生到台前比划比划。
4、你已经会计算哪些平面图形的面积了?打开练习本写一写。
全班反馈。
师课件出示图形及公式。
5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。
学生汇报交流,教师课件演示。
回忆平行四边形面积计算公式的推导过程。
高宽
6、总结方法:这些图形面积公式的推导过程有什么共同点?
预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。
师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?
师板书:转化法
(二)、利用转化,推导公式:
1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
学生操作。
2、师:谁能告诉老师你们小组把圆转化成了什么图形?
生到台前展示。
预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。
师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。
师板书:操作法
3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
预设:生1:平均分的份数越多,拼成的图形越接近于长方形。
生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。
(1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?
(2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?
(3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?
小组同学之间互相说说推导过程。
5、全班演示、汇报:
学生到台前演示交流。
(1)把圆16等分拼成近似的平行四边形。
(2)把圆32等分拼成近似的长方形。
(=(r)
①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。
②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。
教师课件演示。组织学生进行语言表述。
(三)、认真练习,巩固新知:
1、师:计算圆的面积一定要有什么条件?学生交流。
2、课件出示练习题:
(1)求下面各圆的面积。
r= 3厘米
d= 2分米
C= 12。56米
(2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)
(3)圆形花坛的直径20m,它的面积是多少平方米?
拓展练习:
一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。
(1)这头奶牛最多可吃掉多大面积的草?
(2)奶牛吃不到的草坪的面积有多大?
四、板书设计:
学习方法:
转化法
长方形面积=长×宽
操作法↓ ↓
圆的面积=圆的周长的一半×圆的半径
化曲为直S = πr × r
平行四边形面积=底×高
↓ ↓
圆的面积=圆的周长的一半×圆的半径
S = πr × r
五、教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。
(一)、重视自主探究,促进合作交流。
让学生回忆一下以前学过的平面图形的.面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
(二)、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。
(三)、练习设计适当,由浅入深地巩固新知。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
《圆的面积》教学设计6
一、激趣导入
1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。
2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积
3、看到这个课题,你想知道些什么?
(帮助学生明确这节课的学习目标:
(1)了解什么是圆的.面积;
(2)了解与哪些因素有关;
(3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。)
二、实践导学
(一)认识圆的面积
1、什么叫圆的面积。
2、小组讨论
3、圆的大小主要与哪些因素有关?
((1)半径;(2)直径;(3)周长。)
(二)回忆平行四边形面积公式推导过程
1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)
2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?
3、小组讨论
(三)操作探究
1、转化圆形推导公式
(1)、让学生拿出卡纸
(1),观察卡纸
(1)上的圆被等分成多少分,圆被转化成什么图形?
(2)、让学生拿出卡纸
(2),观察卡纸
(2)上的圆被等分成多少分,圆又被转化成什么图形?
(3)、教师课件展示圆被平均分成16等份后转化的图形。
(4)、观察比较,你有什么发现?
2、引导学生观察比较,推导圆面积计算公式。
⑴、将圆通过剪拼,可以转化成已经学过的什么图形?
⑵、新的图形与原来的圆有什么联系?
⑶、试推导圆的面积公式。(课件展示)
长方形的面积=长×宽
圆的面积=c÷2×r=2πr÷2×r=πr2
s=πr2
三、练习巩固
1、运用公式学习例
学生试做,说根据,总结强调。
2、完成基本练习(做一做)
四、拓展提高
1、解决“小羊吃草”问题
《圆的面积》教学设计7
教学内容分析:
圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。
学生情况分析:
小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。
【教学目标】:
1.认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2.过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3.情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:理解圆的面积计算公式的推导。
【教学准备】:相应;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的范围是一个什么图形吗?
生:是一个圆形。
师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1.渗透“转化”的数学思想和方法。
师:关于圆的面积你想了解什么?
(什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2.演示揭疑。
师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的.问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]
3.学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?
(再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.教学例1。
如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?
要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)
我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!
师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(出示第三题)
3.小刚量得一棵树干的周长是125.6c。这棵树干的横截面的面积是多少?
分析题意后学生独立完成(组织交流,评价反馈)
同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?
4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
四、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?
知道哪些条件就可求圆的面积?
(知道半径、直径或是周长)
知道半径:S=πr2
知道直径:S=π(d÷2)2
知道周长:S=π(C÷π÷2)2
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】
五、课后延伸
圆除了转化为长方形,还能转化为什么图形呢?
板书设计:
长方形的面积 = 长 × 宽
圆的面积 =圆周长的一半 × 半径
S = πr × r
= πr2
《圆的面积》教学设计8
教学目标:
1、掌握简单组合图形分解和面积的求法;
2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;
3、渗透图形的外在美和内在关系。
教学重点:简单组合图形的分解。
教学难点:对图形的分解和组合。
教学活动设计:
(一)知识回顾
复习提问:
1、圆面积公式是什么?
2、扇形面积公式是什么?如何选择公式?
3、当弓形的弧是半圆时,其面积等于什么?
4、当弓形的弧是劣弧时,其面积怎样求?
5、当弓形的弧是优弧时,其面积怎样求?
(二)简单图形的分解和组合
1、图形的组合
让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力。
2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积。
以小组的形式协作研究,班内交流思想和方法,教师组织。给学生发展思维的空间,充分发挥学生的主体作用。
归纳交流结论:
方案1。S阴=S正方形-4S空白。
方案2、S阴=4S瓣=4(S半圆-S△AOB)
=2S圆-4S△AOB=2S圆-S正方形ABCD
方案3、S阴=4S瓣=4(S半圆-S正方形AEOF)
=2S圆-4S正方形AEOF=2S圆-S正方形ABCD
方案4、S阴=4S半圆-S正方形ABCD
……………
反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律。
练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?
分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成。
解:连结AO,设P为其中一个三等分点,连结PA、PO,则△POA是等边三角形。
说明:①图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积。
练习2:教材P185练习第1题
例5、已知⊙O的半径为R。
(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;
(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数)。
例5的计算量较大,老师引导学生完成。并进一步巩固正多边形的计算知识,提高学生的计算能力。
说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的'大小无关。实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值。从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积
(三)总结
1、简单组合图形的分解;
2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算。
3、进一步理解了正多边形和圆的关系定理。
(四)作业教材P185练习2、3;P187中8、11。
探究活动
四瓣花形
在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图(1)所示。
再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图(12)所示。
探讨:(1)两图中的圆弧均被互分为三等份。
(2)两朵“花”是相似图形。
(3)试求两“花”面积
提示:分析与解(1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°。
从而,∠ADP=30°。
同理∠CDQ=30°。故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分点。
由对称性知,四段弧均被三等分。
如果证明了结论(2),则图(12)也得相同结论。
(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图(1)的缩影。显然两“花”是相似图形;其相似比是AB﹕EF=﹕1。
(3)花形的面积为:,。
《圆的面积》教学设计9
设计过程:
一、教材分析
教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。
二、学情分析
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
基于以上的教材和学情分析,我制定了以下的教学目标:
三、教学目标
1、认知目标:
提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。
2、能力目标:
培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。
3、情感目标:
通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。
教学重点:
正确掌握圆面积的计算公式。
教学难点:
圆面积计算公式的推导过程。
四、教学过程
(一)创设问题情境,激发学生学习兴趣
1、感知圆的面积:(课件出示一大一小的圆)
师:圆的大小是由什么决定的?(板书:由半径决定)
2、感知圆的面积有大有小:
(选择两个面积不同的圆)
师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。
师:那谁能说说什么叫做圆的面积?
(揭示:圆所占平面的大小叫做圆的面积。)
[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。
(二)学生合作探索,交流操作经验
1、初步感悟:
(1)课件出示:书103例7图。
师:图中每一小格表示1平方厘米。你知道正方形的`面积是多少么?
原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。
通过数圆的面积,得到整圆的面积,然后把表格填完整。
学生填表、计算,汇报
小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的计算公式。
2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。
师:那么,这节课我们就来共同找出求圆面积的方法。
3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)
[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。
师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)
[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。
4、师:刚才我们已经复习了以前我们利用平移、割、补等方法推导平行四边形面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?
你想采用什么方法把圆转化成学过的图形?
[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。
师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。
师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)
[设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。
(三)利用课件演示,呈现经验总结
[注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。
《圆的面积》教学设计10
教学内容:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
教学目标:
知识与技能:
让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
教学难点:
引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
教具准备:
多媒体课件,圆片等。
教学方法:
自主探究法
教学过程:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的'面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:
①你们想通过什么方法来推导圆的面积计算公式?
②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
《圆的面积》教学设计11
教学内容:
国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的'过程,提高数学学习的兴趣。
教学重点:
探索圆面积的计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长12.56
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
《圆的面积》教学设计12
教学内容:
冀教版六年级上册第四单元
教学目标:
1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。
2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。
3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。
4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。
教学重点:
在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。
教学难点:
能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。
教学流程:
一、炫我两分钟
大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即
同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。
出示口算题目。
随机评价。
相信我们都是有智慧有思想的人,我要为你们点赞(动作)。
二、组内交流,完善梳理
教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。
【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】
三、小组合作交流。
组内交流尝试小研究。
出示小组合作交流建议:
1、组长组织本组成员有序进行交流。
2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。
3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。
4、再次确认发言顺序,准备全班交流。
【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】
四、班级交流,提升梳理
1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。
2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。
【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】
3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。
师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。
【设计意图:单元梳理课的.重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】
五、应用拓展
结合练习做相应题目,巩固易错易混知识。
(一)基础题
1、判断下面各题是否正确,对的打“√”,错的打“×”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
2、一个圆的周长是25、12米,它的面积是多少?
3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?
(二)拓展提高
1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?
2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?
3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?
【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】
六、个人整理
经过本课时的学习,你有哪些收获呢?
【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】
《圆的面积》教学设计13
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
利用圆面积计算公式正确计算圆的面积。
教学难点:
圆面积计算公式的推导。
教具准备:
等分圆教具。
学具准备:
分成十六等分的圆形纸片。
教学过程:
一.谈话导入新课
同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。
二.游戏激趣,理解圆的面积的概念。
师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?
生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。
师:现在大家知道男生为什么涂得慢呢?
生:男同学涂的面积大。
三.探究合作,推导圆的面积公式
1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?
生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的'问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?
2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。
3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。
四.巩固新知,实践运用
1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。
2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?
五.总结
1、这节课你们有什么收获?
2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。
《圆的面积》教学设计14
教学目标
1.知识与技能
⑴使学生能根据具体条件,比较灵活地计算圆的面积。
⑵使学生认识圆环,学会求圆环面积的计算方法。
2.过程与方法
培养学生主动探究、合作交流、解决问题的方法和能力。
3.情感态度与价值观
培养学生应用圆的周长公式和面积公式解决一些与生活相关的实际问题,进一步认识图形和生活的联系,感受平面图形的学习价值。提高数学学习的兴趣和学好数学的自信心。
教学重点、难点
求圆环面积的计算方法。
教学过程
一、情景启发,明确目标
1.展示20xx年5月21日日环食视频(附件:日环食视频)。引出课题:圆环面积
简单介绍圆环的形成。
2.课件展示:生活中的圆环,感受生活美。
3.复习:圆的面积怎样计算呢?
(1)、已知圆的半径为2cm,求圆的面积。
(2)、已知圆的直径为6cm,求圆的面积。
4.简单介绍圆环的相关名称及关系:
5.请找出下面圆环的内圆半径(r)或外圆半径(R):
二、合作探究,达成目标
大家动笔算一算。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
圆环面积=外圆面-内圆面积
3.14×62 - 3.14×22 3.14×(62 – 22)
= 3.14×36 - 3.14×4 = 3.14×(36 – 4)
= 113.04 – 12.56 = 3.14×32
= 100.48(cm2)= 100.48(cm2)
答:它的面积是100.48cm2.
比较、分享。求环形的面积,你喜欢那种方法?
S环=πR2-πr2 S环=π(R2-r2)
三、变式练习,检测目标
1.填空:
2.一个圆形环岛的直径是50m,中间是一个直径为10m的.圆形花坛,其它地方是草坪。草坪的占地面积是多少?
3.14×(50÷2)2-3.14×(10÷2)2
=3.14×252-3.14×52
=3.14×625-3.14×25
=1962.5-78.5 3.14×[(50÷2)2-(10÷2)2]
=1884(m2)= 3.14×[252-52]
= 3.14×[625-25]
= 3.14×600
=1884(m2)
答:草坪的占地面积是1884m2.
3.某公园内有一座圆形喷水池,它的半径是3m。现在要在喷水池周围铺上1m宽的甬路。甬路的占地面积是多少m2?
外圆半径:1+3=4(m)
环形面积:3.14×(4-3)
=3.14×(16-9)
=3.14×7
=21.98(m)
答:甬路的占地面积是21.98m2.
4.环形的外圆周长是18.84cm,内圆直径是4cm,求环形的面积
3.14×[(18.84÷3.14÷2)2-(4÷2)2]
=3.14×[32-22]
=3.14×[9—4]
=3.14×5
=15.7(cm2)
答:环形的面积是15.7cm2。
四、评讲总结,升华目标
这节课你学习了什么内容?你有哪些收获?让生说说。师用课件再现一次。
1、什么样的图形是圆环。
2、怎样计算圆环的面积。
五、课堂达标:解决问题
1.土楼是福建、广东等地区的一种建筑形式,被列为“世界物质文化名录”,土楼的外围形状有圆形、方形椭圆形等。圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼,圭峰楼外直径是32m,内直径是12m。土楼的房屋占地面积是多少m2?
2.天安门广场前面有一个大型喷泉,喷泉的半径为3m。国庆节快要到了,园艺师傅们在喷泉的周围摆放了4m宽的鲜花。(1)鲜花所占面积有多大?(2)如果每平方米摆放鲜花需要50元,那么摆放这些鲜花至少需要多少元
外圆半径:4+3=7(m)
环形面积:3.14×(7-3)
=3.14×(49-9)
=3.14×40
=125.6(m)
答:鲜花所占的面积有125.6m 。
3.拓展延伸:求下列图形的阴影部分面积。(单位:cm)
(1)、大半圆的面积
3.14×[(2+4)÷2]2÷2
=3.14×9÷2
=14.13(cm2)
(3)、小半圆的面积
3.14×(2÷2)2÷2
=3.14×1÷2
=1.57(cm2)
答:阴影的面积是6.28cm2.
六、布置作业
1、右图是一块玉璧,外直径是18cm,内直径是7cm.这块玉璧的面积是多少?
2、右图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。
3、计算下图涂色部分的面积。(单位:厘米)
七、课后反思
1.本课时的教学从学生熟悉的事例出发,创设情景,使学生基本掌握了本课的知识点,并培养了学生的民主、合作精神。
2.在整节课中,自己也明白了:教师是主导,学生是主体。充分调动学生的积极性,让学生积极参与;鼓励学生在探索的过程中,用自己喜欢的方法解决简单的实际问题;让学生体验解决问题策略的多样性,培养并发展了学生的观察能力、创新精神。
《圆的面积》教学设计15
教学内容:
义务教育课程标准实验教科书第十一册P67-68
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。 教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)
生1:我发现图上有5个工人在铺草坪。
生2:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。 师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
[设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的含义。]
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗? 我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。 师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的'知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的 发生了变化,但是它们的 不变?
②转化后长方形的长相当于圆的 ,宽相当于圆的 ? ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。 师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?) [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m ,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
七、板书设计
圆的面积
圆所占平面的大小叫做圆的面积
长方形面积= 长×宽
= 半径
S = πr ×r
=πr2
【《圆的面积》教学设计】相关文章:
圆的面积教学设计05-11
《圆的面积》教学设计08-25
圆的面积教学设计09-15
圆的面积教学设计方案09-12
圆的面积课堂教学设计08-20
圆的面积教学设计15篇09-14
《圆的面积》经典教学设计(通用13篇)09-10
《圆的面积》教学设计(通用10篇)08-18
圆的面积教学设计(通用16篇)09-24