教学设计

《正比例》的教学设计

时间:2025-04-13 08:35:22 欧敏 教学设计 我要投稿

关于《正比例》的教学设计范文(精选15篇)

  作为一位不辞辛劳的人民教师,时常需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写才好呢?以下是小编帮大家整理的关于《正比例》的教学设计范文,欢迎阅读与收藏。

关于《正比例》的教学设计范文(精选15篇)

  《正比例》的教学设计 1

  教学要求:

  1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学过程:

  一、复习铺垫

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、引入新课

  我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

  二、教学新课

  1、教学例1。

  出示例1、让学生计算,在课本上填表。

  让学生观察表里两种量变化的数据,思考。

  (1)表里有哪两种数量,这两种数量是怎样变化的?

  (2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

  引导学生进行讨论。

  提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

  想一想,这个式子表示的是什么意思?

  2、教学例2

  出示例2和想一想

  要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

  学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的.?

  比值1.6是什么数量,你能用数量关系式表示出来吗?

  谁来说说这个式子表示的意思?

  3、概括正比例的意义。

  像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

  4、具体认识

  (1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

  例2里的两种量是不是成正比例的量?为什么?

  (2)做练习八第1题。

  5、教学例3

  出示例3,让学生思考

  提问:怎样判断是不是成正比例?

  请同学们看一看例3,书上怎样判断的,我们说得对不对。

  强调:关键是列出关系式,看是不是比值一定。

  三、巩固练习

  1、做练一练第1题。

  指名学生口答,说明理由。

  2、做练一练第2题。

  指名口答,并要求说明理由。

  3、做练习八第2题(小黑板)

  让学生把成正比例关系的先勾出来。

  指名口答,选择几题让学生说一说怎样想的?

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

  五、家庭作业。

  《正比例》的教学设计 2

  教学目标:

  1、初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

  教学重点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  预习指导:

  一、自学教材。

  阅读教材第62~63页。

  二、检查学习。

  1、怎样两个量成正比例?

  2、完成"试一试"。

  教学准备:

  课件和口算题。

  教学过程:

  一、导入

  谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1

  1、课件出示例1的表

  ⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

  ⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

  2、那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

  3、我们可以写出这么几组路程和对应时间的比。

  ⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

  ⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

  ⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  课件出示:路程和时间成正比例。

  ⑷现在你能完整地说一说表中路程和时间成什么关系吗?

  4、刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目。

  ⑴课件出示"试一试"

  ⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

  课件出示表中的数据。

  ⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

  集体交流:

  ⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

  ⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

  小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

  ⑹你能完整地这样说给你的同桌听一听吗?

  ⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

  课件出示课题。

  ⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

  指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

  5。完成"练一练"

  ⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

  ⑵生产零件的数量和时间成正比例,因为生产零件的`数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

  小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

  三、练习

  1、完成练习十三第1题。

  请大家继续看课本66页第1题

  2、完成练习十三第2题

  ⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

  ⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

  3、完成练习十三第3题(课件出示题目)

  ⑴课件出示放大后的三个正方形、

  ⑵大家看一看,你是这样画的吗?

  ⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

  校对学生做的情况。

  ⑷请大家根据表中的数据讨论下面两个问题。

  ①正方形的周长与边长成正比例吗?为什么?

  ②正方形的面积与边长成正比例吗?为什么?

  四、总结。

  通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

  板书设计:

  正比例的意义

  路程和时间是两种相关联的量,

  时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

  我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  《正比例》的教学设计 3

  【教学内容】

  正比例

  【教学目标】

  使学生理解正比例的意义,会正确判断成正比例的量。

  【重点难点】

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。

  【教学准备】

  投影仪。

  【复习导入】

  1、复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书:=速度。

  ②已知总价和数量,怎样求单价?

  板书:=单价。

  ③已知工作总量和工作时间,怎样求工作效率?

  板书:=工作效率。

  2、引入课题:

  这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  【新课讲授】

  1、教学例1。

  教师用投影仪出示例1的图和表格。

  学生观察上表并讨论问题。

  (1)铅笔的`总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。

  ②数量增加,总价也增加;数量降低,总价也减少。

  ③铅笔的总价和数量的比值总是一定的,即单价一定。

  教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2、教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。

  教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  3、归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三:两个量的比值一定。

  4、用字母表示正比例的关系。

  教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

  5、教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  【课堂作业】

  完成教材第46页的“做一做”(1)~(3)。

  答案:

  (1)比值表示每小时行驶多少km。

  (2)成正比例。理由:路程随着时间的变化而变化。

  ①时间增加,路程也增加,时间减少,路程也随着减少;

  ②路程和时间的比值(速度)一定。

  【课堂小结】

  通过这节课的学习,你有什么收获?

  【课后作业】

  完成练习册中本课时的练习。

  《正比例》的教学设计 4

  教学资料:

  北师大版小学数学六年级下册《正比例》

  教学目标:

  1、结合丰富的事例,认识正比例。

  2、掌握成正比例变化的量的变化规律及其特征。

  3、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学重点:

  认识正比例的好处和怎样决定两个变化的量是不是成正比例。

  教学难点:

  决定两个变化的量是不是成正比例。

  教具准备:

  课件

  教学过程:

  一、导入新课:

  出示:路程、单价、正方形的边长……

  根据上面的某个量,你能想到些量?为什么?

  在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。

  二、新课探究:

  (一)、活动一:初步感受正比例关系。

  1、课件出示正方形周长与边长、面积与边长的变化状况:

  (1)请把表格填写完整。

  (2)观察表格,你能发现什么规律?

  (群众填表后,独立观察,发现规律,

  2、组织学生交流发现的规律,引导学生比较两个规律的异同点。

  3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。

  所以两个相互依靠的变量之间的关系是不一样的。

  (二)、活动二:结合实例体会正比例的好处:

  1、课件出示:

  (1)将表格填完整。

  (2)从表格中你能发现什么规律?

  (以小组为单位,选取一个情境进行研究。)

  2、交流汇报:

  (三)、活动三:揭示正比例的好处。

  1、这2规律有什么共同点?

  教师随着学生的回答板书:

  都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。

  2、教师揭示正比例的含义。

  像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)

  3、结合实例说明:

  表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。

  学生说一说表二的两个量。

  4、用字母表示出正比例关系。

  如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?

  (四)、活动四:决定两个量是不是成正比例的量。

  1、出示活动一中的'表格:

  正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?

  学生自主决定后交流。

  2、看来决定两个量是否成正比例务必具备几个条件?

  强调:只有具备两个条件,我们才能说这两个量成正比例。

  三、课堂练习:

  1、根据下表中的数据,决定表中的两个量是不是成正比例:

  平行四边形的面积/cm2

  6

  12

  18

  24

  30

  平行四边形的高/cm

  1

  2

  3

  4

  5

  买邮票的枚数/枚

  1

  2

  3

  4

  5

  所付的钱数/元

  0.8

  1.6

  2.4

  3.2

  4.0

  2、小明和爸爸的年龄变化状况如下:

  小明的年龄/岁

  6

  7

  8

  9

  10

  11

  爸爸的年龄/岁

  32

  33

  (1)把表格填写完整。

  (2)父子的年龄成正比例吗?为什么?

  3、决定下面各题中的两个量是否成正比例,并说明理由。

  (1)每袋大米的质量必须,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长和长。

  (4)圆的周长和直径。

  (5)圆的面积和半径。

  四、课堂总结:

  透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。

  板书设计:

  正比例

  一个量随着另一个量的变化而变化

  两个量的比值是不变

  x=ky(k必须)

  教学反思:

  1.课堂流程的设计,延展了探究空间。

  本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。

  2.数学材料的呈现,丰富了体验途径。

  为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。

  3.学习方式的选取,促进了深度感悟。

  教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。

  《正比例》的教学设计 5

  教学内容:

  教科书第63页的例2,“练一练”和练习十三的第4.5题。

  教学目标:

  1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

  2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

  3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

  教学重点:

  能认识正比例关系的图像。

  教学难点:

  利用正比例关系的图像解决实际问题。

  教学准备:

  多媒体

  教学过程:

  一、复习激趣

  1、判断下面两种量能否成正比例,并说明理由。

  数量一定,总价和单价

  和一定,一个加数和另一个加数

  比值一定,比的前项和后项

  2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

  二、探究新知

  1、出示例1的表格

  根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

  你能根据表中的.每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

  2、学生尝试画出正比例的图像

  3、展示、纠错

  每个点都应该表示路程和时间的一组对应数值。

  4、回答例2图像下面的问题,重点弄清:

  (1)说出每个点表示的含义。

  (2)为什么所描的点在一条直线上?

  (3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

  借助直观的图像理解两种量同时扩大或缩小的变化规律。

  三、巩固延伸

  1、完成练一练

  小玲打字的个数和所用的时间成正比例吗?为什么?

  根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

  估计小玲5分钟打了多少个字?打750个字要多少分钟?

  2、练习十三第4题

  先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。

  3、练习十三第5题

  先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

  组织讨论和交流

  4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

  根据表中的数据,描出所对应的点,再把它们按顺序连起来。

  同桌之间相互提出问题并解答。

  四、反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

  五、作业

  完成《练习与测试》相关作业

  《正比例》的教学设计 6

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生用发展变化的观点来分析问题的能力。培养学生概括能力和分析判断能力。

  【教学重点】

  使学生理解正比例的意义

  【教学难点】

  引导学生通过观察、发现思考两种相关联的量的变化规律。

  【教学过程】

  一、复习:

  1、已知路程和时间,求速度?

  2、已知总价和数量,求单价?

  3、已知工作总量和工作时间,求工作效率?

  4、已知圆柱体的体积和底面积,高度怎么求?

  二、课程教学

  1、出示例题1图:观察图中的小女孩在做什么,她前面杯子里的水一样多吗?水的体积和高度有什么规律?

  让学生观察表格,分析数据的变化规律,将相应数据填写在表格内。

  思考:再填表中你发现了什么?

  点拨:高度变化,体积也随着变化,我们就说高度和体积是两个相关联的量:根据计算,你发现了什么?(相对应的两个数的比的比值一样或固定不变)

  用式子表示他们的关系是:

  教师小结:

  同学们通过填表、交流,知道高度和体积是两种相关联的量,体积随着高度的变化而变化,高度扩大,体积随着扩大;体积缩小,高度也随着缩小。如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  2、教学例2

  出示例题图2:例1的实验结果可以用下面的图像表示:

  (1)从图中你发现了什么?

  (2)不计算,根据图像判断,如果杯中水的高度是7cm,那么水的`体积是多少?225cm3的水有多高?

  点拨:每一个红点对应的x和y值分别是多少?黑色图线上的点表示x和y的变化情况。因此,x=7时,y=175;当y=225时,x值对应的是9。

  三、课堂练习

  出示"做一做"内容:一辆汽车在高速路上形式,下面是汽车行驶的时间和路程。

  (1)你能写出几组路程和相对应的时间的比?比较这些比值的大小,说一说这个比值表示什么?

  (2)表中的路程和时间成正比例吗?为什么?

  (3)在下图中描出表示路程和相应时间的点,然后把它们按顺序连起来。并估计一下行驶120km大约要用多长时间。

  提示:可以通过例题1、2,自己分析并解决。

  教师巡视,发现问题及时给予提示和帮助。前面的(1)、(2)问题可以共同解决。(3)要让学生自己动手分析。

  《正比例》的教学设计 7

  教学目标:

  知识与技能:

  学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法 :

  学生经历从具体实例中认识成正比例的量及正比例关系的过程,通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度 :

  在主动参与数学活动的过程中, 进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识,并乐于与人交流。

  教学重点:

  理解正比例的意义

  教学难点:

  能准确判断成正比例的量

  教学具准备:

  多媒体课件、P39页表格

  教学过程:

  一、游戏导入,激发兴趣

  同学们,你们玩过石头、剪子、布的游戏吗?我们一起来玩这个游戏。 请大家听清楚游戏规则:同桌两人为一组,一边进行游戏,一边用画 “正” 字的方法记录自己赢的次数,赢一次得5分,时间30秒。听明白了吗?

  做好准备,游戏时间30秒,预备──开始!

  秒表计时,开始游戏,教师巡视。 时间到,我来了解一下做游戏的情况:

  请同学们注意,赢1次我们记 5分。下面请大家算一算你可以得多少分? 谁愿意说说自己的得分?

  学生边说,教师边在电脑表格上填上数据

  二、 引导观察,启发思考

  1、请大家仔细观察这张表,看看表中有哪几种数量?

  2、学生抢答:

  赢的次数是 1,得分是 5;赢的次数是 2 时,得分是10 赢的次数是 6 时,得分成了多少?

  我们再倒过来观察:得分是 20,赢的次数是 4;得分是15的时候,赢的次数是3;得分是多少的时候? ,赢的次数是 2

  3、通过抢答:你发现了什么?

  4、引出“两种相关联的量”:得分随着赢的次数的变化而变化,像这样的两种量,我们把它们叫做相关联的量。(教师板书:两种相关联的量)

  5、在现实生活中,我们常常会遇到两种相关联的量,当其中一种量变化时,另一种量也随着变化。就像现在我发现每位同学都精神抖擞的样子,老师也感到上课的精神倍增一样。

  三、创设情景,观察实验。

  1、课件出示实验情景图并设问:从这张情景图中,你能看到了什么? 谁来说说

  学生汇报(6个大小相同的'圆柱型烧杯,一把直尺,带颜色的水)

  2、由于这个实验现场做起来比较麻烦,所以我们借助电脑来完成它,好吗?

  要求:一边仔细观察,一边记录实验数据。

  水的体积是200毫升时,引导学生猜一下水的高度是多少?

  四、自主探究成正比例的量

  1、观察变量

  我们一块来看一下实验结果:(课件出示实验报告单)

  仔细观察分析实验报告单,独立思考以下问题,然后在小组内讨论:(建议大家按一定的顺序观察、分析实验报告单,可以从左往右,也可以从右往左。)

  (1)表中反映了哪几种量?

  (2)水的高度和体积这两种量有变化吗?

  (3)水的体积是怎样随着高度变化的?

  小组汇报。(水的高度增加,体积随着增加,高度减少,体积随着减少,也就是说:一种量变化,另一种量也随着变化。)(板书:一种量变化,另一种量也随着变化)

  2、引导学生研究“定量”

  (1)由统计表中的这两种量,你还能想到什么?(结合学生的回答出示统计表。

  (2)你会算底面积吗?请一位同学说出底面积的计算方法。(教师板书)

  (3)通过计算底面积,你有什么发现?

  (4)介绍“一定”底面积都相等,也就是体积和高度的比值都相等,这种情况,数学上叫做“一定”。板书:“一定”

  3、认识“成正比例的量”

  (1)再次观察统计表,每位同学先独立思考,然后小组讨论:

  A、现在统计表中有几种量,哪种量是变化的?哪种量是不变的?

  B、体积和高度,这两种量的变化有什么特征?

  (2)汇报明确:高度和体积是两种相关联的量。高度增加,体积随着增加,高度减少,体积随着减少。体积和高度的比值一定。

  (3)揭示成正比例的意义。(板书课题)

  4、教学字母表达式

  (1)描述正比例关系的这段话有点长,我们可不可以用字母表达式把它简明地表示出来?

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),试着用字母表示出正比例关系。

  (2)学生汇报:

  (3)同学们能不能结合刚才的实验数据,在小组内说说X、Y、K表示什么?

  5、自学讨论

  (1)现在我们来看看课本上是怎样描述“正比例关系”的?自已勾一勾书,然后边读边思考:

  判断两个量是否成正比例,需要具备哪些条件?然后在小组内讨论交流。

  (2)汇报明确

  (3)生产和生活中有很多相关联的量,有的成正比例,有的相关联,但不成比例。判断两种相关联的量是否成正比例,关键要看这两个量的比值是否一定,只有比值一定,这两个量才成正比例关系。

  五、巩固练习,拓展提高

  刚才大家学习的都很认真,下面老师想考考大家,愿意接受挑战吗? 1、第一关:出示课本41页“做一做”

  第(1)、(2)独立解答,第(3)题小组讨论,然后组织交流。 2、第二关:老师在生活中收集了三个例子,其中只有一个是成正比例关系的,你能把它找出来吗?

  小新跳高的高度和他的身高; 订阅《学生天地》的数量和总价; 正方形的边长和面积。

  3、第三关:拓展练习(根据教学时间机动安排) 已知X-Y=0,X,Y成正比例吗

  六、全课小结

  通过这节课的学习,你有什么收获?

  板书设计

  成正比例的量

  两个相关联的量,一个量变化,另一个量也随之变化

  y(一定)} x?k(一定)

  《正比例》的教学设计 8

  教学目标:

  1、知道与正比例函数的意义.

  2、能写出实际问题中正比例关系与关系的解析式.

  3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

  4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

  教学重点:对于与正比例函数概念的理解.

  教学难点:根据具体条件求与正比例函数的解析式.

  教学方法:结构教学法、以学生“再创造”为主的教学方法

  教学过程:

  1、复习旧课

  前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

  2、引入新课

  就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

  顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的`正确的例子写在黑板上)

  这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.

  一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )

  3、例题讲解

  例1、某油管因地震破裂,导致每分钟漏出原油30公升

  如果x 分钟共漏出y 公升,写出y与x之间的函数关系式

  破裂3.5小時后,共漏出原油多少公升

  《正比例》的教学设计 9

  教学内容:正比例的意义。

  教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。

  教学重点:正比例的意义。

  教学难点:正比例的判断。

  教具准备:小黑板、投景影片

  教学过程:

  一、 复习

  根据下面各题,先口答列式及得数,后说数量关系式。

  1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?

  2、 一种布,买3米共要27元,平均每米布多少元?

  3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?

  师据学生回答板书如下:

  路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率

  二、引新

  我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)

  三、新授

  1、 教学例1。一列火车行驶的时间和所行的路程如下表。

  时间(时) 1 2 3 4 5 6 7 8

  路程(千米) 90 180 270 360 450 540 630 720

  (1) 引导学生观察上表内数据。

  (2) 边观察边思考下面问题:

  (1) 表中有哪几种量?这两促量有没有关系?

  (2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)

  (3) 引导学生分析这两种相关联的量的变化有什么规律?

  (1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:

  90/1=90 360/4=90 540/6=90

  (2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)

  (3)师:它们之间的关系可以用式子表示

  路程/时间=速度(一定)

  (4) 小结。

  时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  2、 教学例2

  (1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

  数量(米) 1 2 34 5 6 7

  总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4

  (2)引导学生观察上表内的数据。

  (3) 回答下面风个问题:

  表中有哪两种量?这两种量有关系吗?为什么?

  这两种量是怎样变化的?

  它们的变化有什么规律?

  相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

  (4) 小结。

  花布的米和总价也是两种相关联的'量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

  3、 概括正比例的意义及关系式。

  (1) 比较上面的例1和例2,它们有什么共同点?

  (2) 判断成正比例量的方法:是什么?

  (3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (4) 概括关系式:

  Y/X=K(一定)

  4、 教学例3。

  出示例3

  师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)

  5、 小结。

  判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。

  四、巩固练习

  第13页做一做

  五、 总结。

  1、 什么叫成正比例的量?

  2、 怎样判断两种量是成正比例的量?

  六、 作业: 完成练习六第1-3题。

  《正比例》的教学设计 10

  一、教学内容

  本单元在常见数量关系的基础上编排,教学正比例关系和反比例关系。与过去的《大纲》教材相比,本单元加强对正比例和反比例的理解,重视对正比例关系图像的认识与简单应用,不利用正比例、反比例解答应用题。

  全单元编排3道例题、一个练习,教学内容分成两段。

  例1、例2,正比例的意义、正比例的图像;

  例3,反比例的意义。

  二、教学注意点:

  1.细致安排学生的首次感知。

  正比例概念和反比例概念都要在充分的感知活动中形成,例1和例3分别是学生首次感知正比例关系与反比例关系,教材作了很细致的安排。例1把感知过程设计成四步。

  路程

  时间

  写比、求比值、解释比值。例1呈现的表格里是一辆汽车行驶的时间和路程的数据,让学生从中选择几组相对应的路程和时间,分别写出比并求出比值,发现所有比的比值都是80,体会这个比值是汽车行驶的速度,这辆汽车的行驶速度始终不变。

  用数量关系式表示比值一定。写出的各个比的数量关系相同,可以用式子“    =速度(一定)”表示它们的共同特征。学生对“路程比时间等于速度”很熟悉,而“速度(一定)”是例1数量关系的特点,首次感知正比例关系的.要点就在这里。

  体会相关联的量。正比例是两个相关联量的关系,教材指出路程和时间是两种相关联的量。说它们“相关联”,是因为时间变化,路程也随着变化。

  揭示正比例意义。在前三步感知活动的基础上,告诉学生:当路程和相应的时间的比值总是一定时,就说行驶的路程和时间成正比例,行驶的路程和时间叫做成正比例的量。

  例3首次感知反比例关系,也分四步进行。依次是:观察表格里的数据,笔记本的单价变化,购买的数量也变化,但总价始终不变;用数量关系式表示积一定;理解相关联的量;揭示反比例意义。

  2.变换情境,让学生反复感知。

  仅有例题的首次感知还不能形成正比例、反比例的概念,需要反复感知,积累充分的感性认识。P62“试一试”、练习十三第1题再次感知正比例关系,P65“试一试”、练习十三第6题再次感知反比例关系。

  选择与例题不同的数量。P62“试一试”里购买铅笔的数量与总价是相关联的量,它们的比值(单价)保持不变。练习十三第1题里碾米机的工作时间与碾米数量是相关联的量,它们的比值(工作效率)保持不变。学生在感知正比例关系的同时,体会这种关系是生活中常见的。

  提出问题,引导有序地思考。“试一试”和练习题分别设计四个和三个连续的问题,引导学生有条理地思考,独立、主动经历感知过程。

  重温发现正比例关系的方法。几个连续问题里的学习活动依次是:找到相关联的两种量→写出几组对应数量的比并求比值→比较比值的大小,解释比值的意义→用数量关系式表达比值一定→作出成正比例的结论。这些活动与例题保持一致,重温了认识正比例关系的过程,为判断两种量成不成正比例打下了基础。

  3.建立正比例、反比例的概念。

  本单元教学要形成正比例和反比例的概念。概念是一类现象共同的本质特征的反映,形成概念要对感性认识进行抽象与概括。

  提取共同特征。各个成正比例的实例中都有两个相关联的量,两种量相对应的数的比值总是一定的。各个成反比例的实例里也有两种相关联的量,它们相对应的数的积是一定的。这些分别是正比例、反比例的本质特征,建立概念,要把这些共同特征提取出来。

  用字母表示关系与特征。用字母x和y表示两种相关联的量,用k表示它们的比值或者表示它们的积,用字母组成的式子表示正比例和反比例关系,是认识的一次抽象,概念在抽象中形成。

  4.应用概念,判断比例关系。

  形成概念是为了更好地认识和把握客观世界,在现实生活中应用概念识别、判断和推理。正比例和反比例是常见的数量关系,判断比例关系还能初步体验函数思想,发展数学思考。

  判断具体问题里的正比例、反比例。第63页“练一练”、第65页“练一练”分别判断两种量成不成正比例或反比例,并说出理由。要根据正、反比例的意义,利用表格里的数据,按照例题和“试一试”的方法与步骤进行思考。通过判断,进一步理解正比例、反比例的意义。练习十三第2、7两题也作出类似的安排。能够在具体问题里进行判断,是本单元的基本要求。

  利用反例加强概念。第66页第3题通过画图、计算和填表,理解正方形面积与边长不成正比例。第68页第8题通过看图、填表,理解长方形周长一定,长和宽不成反比例。这些都是在具体问题里作出的判断,能使学生深刻体会正比例、反比例的特征,从而加强概念。

  初步进行稍抽象的判断。第70页第12题没有提供具体的数据,判断两种量是不是成正比例或反比例,是较高的要求。虽然思维比较抽象,也要按照判断正比例、反比例的一般程序,先找到相关联的量,研究两个量是不是比值一定或者积一定,然后作出结论。其中的(2),一个人的年龄与体重不能看作相关联的量,而且它们的比或乘积都没有实际意义,更谈不上比值一定或积一定,因而既不成正比例,也不成反比例。

  5.认识并简单应用正比例的图像。

  正比例图像是一条射线(中学里是一条直线),反比例图像是曲线(中学里是双曲线)。本单元只教学正比例的图像,不教学反比例的图像。

  正比例图像的教学要求有两点,一是联系画折线统计图的经验,在方格纸上描出表示各组对应数量的点,知道所描的点在同一条直线上。二是已知一组相对应的数量中的一个数量,在图像上估计另一个数量是多少。

  《正比例》的教学设计 11

  设计说明

  本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:

  1.有效利用教材图表,增强对相关联的量的形象感受。

  教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。

  2.科学调动多种感官,增强对知识形成过程的体验。

  在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。

  3.体会数学与生活的密切联系,关注对正比例意义的理解。

  因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的`情境及数量关系理解正比例的意义。

  课前准备

  教师准备 多媒体课件

  教学过程

  第1课时 正比例的认识

  ⊙复习导入

  1.引导回顾。

  师:什么是相关联的量?请举例说明。

  (学生汇报)

  2.导入新课。

  师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。

  设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。

  ⊙探究新知

  1.借助图表,进一步感知相关联的量。

  面积/cm2

  小组合作探究,交流下面的问题:

  (1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。

  (2)同桌合作填表。

  (3)仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?

  预设

  生1:我从表中发现正方形的边长增加,周长也增加。

  生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。

  生3:我从表中发现正方形的周长总是边长的4倍。

  生4:我从表中发现正方形的边长增加,面积也增加。

  ……

  (4)比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?

  预设

  生1:相同点是都随着边长的增加而增加。

  生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。

  生3:在变化过程中,正方形的周长与边长的比值一定,都是4。

  生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。

  《正比例》的教学设计 12

  教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学关键:

  理解成正比例的两个量的意义。

  教学过程:

  一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

  (1)两种相关联的`量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

  (2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

  (3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  三、巩固练习

  (一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

  (二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

  ①填一填:(长度:米,价格:元)

  ②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

  板书:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

  =k(一定)

  《正比例》的教学设计 13

  教学内容:

  两种相关联量的变化情况。p18上的内容。

  教学目标:

  1.结合具体目标,体会生活中存在着大量互相依存的变量,让学生知道其中一种量变化,另一种量也随着变化。

  2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。教学重点:两种变化的量。

  教学难点:

  根据图表说明两种量的变化情况

  教具准备:

  直尺,三角板、课件等。

  教学方法:

  自主探究

  教学过程:

  一、揭示课题。

  教师:在现实生活中,存在着很多相关联的量。其中一种量变化,另一种量也随着变化。今天我们就来研究这些量的变化情况。

  二、探索新知

  活动一:观察并回答。

  1.下表是小明的体重变化情况。

  观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。

  2.上表中哪些量在发生变化?

  3.说一说小明10周岁前的.体重是如何随年龄增长而变化的?

  小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。

  4.体重一直会随年龄的增长而变化吗?这说明了什么?

  说明:体重和年龄是一组相关联的量。但体重的增长是随着人的生长规律而确定的。

  5.教育学生要合理饮食,适当控制自己的体重。

  活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

  观察书上统计图:

  1.图中所反映的两个变化的量是哪两个?

  2.横轴表示什么?纵轴表示什么?

  同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。

  3.一天中,骆驼的体温最高是多少?最低是多少?

  4.一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

  5.第二天8时骆驼的体温与前一天8时的体温有什么关系?

  6.骆驼的体温有什么变化变化的规律吗?

  活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。

  1.蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

  2.如果用t表示蟋蟀每分钟叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。t

  3.你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?

  四人小组交流你收集到的信息,选派代表请举例说明

  4.你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

  全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的

  两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

  三、深化练习。

  找一找,生活中两种相关联的量,记录它们的变化情况。

  四、作业。

  下表是圆面积变化情况。

  1.上表哪些量在发生变化?

  2.圆的面积如何随着半径的增长而变化的?

  《正比例》的教学设计 14

  教学内容:

  正比例的意义。p25~26的例题,“说一说”“想一想”“练一练”等。

  教学目标:

  1.结合丰富的事例,认识正比例,理解正比例的意义。

  2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学重点:

  理解正比例的意义。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教具:

  课件

  教法:

  自主探究

  教学过程:

  一、提示课题。

  1.由学生说一说生活中两种相关联的量的变化情况。如年龄与体重.时间与温度.价钱与数量等。

  2.教师:两种相关联的量,一种量变化,另一种量也随着变化,这样的两种量有什么关系呢?这就是我们今天要学习的内容。

  板书:正比例

  二、探索新知

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1.观察,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2.填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是

  4.正方形的面积一边长的比是边长,是一个不确定的值。

  (二)情境二:

  1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2.从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:

  1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2.从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3.说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的.变化而变化,在变化过程中应付的钱数与质量的比值相同。

  5.正比例关系:

  (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  (2)购买苹果应付的钱数与质量有什么关系?

  6.观察思考成正比例的量有什么特征?

  一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

  (四)想一想:

  1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  (1)正方形的周长随边长的变化而变化,且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。请生用自己的语言说一说。

  2.小明和爸爸的年龄变化情况如下:

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)与同桌交流,再集体汇报。

  三、深化练习(课本中练一练)。

  四、总结。

  五、作业。选用作业设计习题

  《正比例》的教学设计 15

  教学目标

  1.经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点

  正确理解正比例的意义,并能准确判断成正比例的量。

  教学难点

  引导学生通过观察、思考发现两种相关联的量的变化规律,概括出正比例关系的概念。

  教学资源

  学生已学过一些常见的数量关系和计算公式,掌握比和比例的知识。

  预习菜单。

  预习作业设计

  1.填空

  ①已知路程和时间,怎样求速度?()Ο()=速度

  ②已知总价和数量,怎样求单价?()Ο()=速度

  ③已知工作总量和工作时间,怎样求工作效率?()Ο()=速度

  2.预习例1观察下表,思考下列问题:

  一辆汽车行驶的时间和路程如下:

  时间(时)

  1

  2

  3

  4

  5

  6

  ……

  路程

  (千米)

  80

  160

  240

  320

  4000

  480

  ……

  ①表中有哪两种量?

  ②这两种量的数值分别是怎样变化的?

  ③你发现这两种量变化有什么规律吗?如果看不出规律的话,可以先写出几组相对应的路程和时间的比,求出比值,想想有什么规律。

  学程设计导航策略调整反思

  一、揭示题课,认定目标(预设2分钟)我们学过一些常见的数量关系,这节课我们进一步来研究这些数量关系中的一些特征。通过学习我们要弄清什么样的两个量成正比例,怎样判断两种量是否成正比例。

  二、交流合作,提炼建模(预设7分钟)

  1.出示例1小组交流预习情况。

  2.全班交流汇报,探究新知:

  ①理解“相关联的量”。

  ②用式子表示路程和时间的变化规律。

  ③学生看书、质疑。揭示路程和时间是成正比例的量。

  3.根据板书完整地说一说表中路程和时间成什么关系。组织全班交流

  1.引导学生认识:时间变化,路程也随着变化,这样的两种量,就叫做两种相关联的量。(板书:两种相关联的量)实际生活中,还有哪些相关联的量呢?跟你的同桌说一说。结合举例,抓住“随着”一词说明:一种量的变化,是因为由另一种量的.变化引起的,这样的两种量才是相关联的量。

  2.引导学生用式子表示路程和时间的变化规律,教师相机板书:路程/时间=速度(一定)

  3.象这样的两种量,它们的关系叫什么?请同学们打开课本,自己获取有关概念。组织汇报:通过看书,你知道了些什么?还有什么疑问?(老师适时板书)

  4.教师指导学生完整地说一说表中路程和时间的正比例关系。

  三、抽象分析,掌握方法(预设10分钟)1.围绕学习菜单完成“试一试”。

  ①独立思考。

  ②小组交流。

  2.全班交流汇报。完整地说说表中总价和数量成什么关系。

  3.比较例1与试一试,思考并讨论,这两个题有什么共同点?

  4.如果用字母χ和У分别表示两种相关联的量,用κ表示它们的比值,用式子怎样表示正比例关系?

  5.成正比例的量具备哪两个条件?1.引导学生完整地说说表中总价和数量成什么关系。

  2.教师相机板书正比例的关系式。

  3.引导学生提炼出成正比例的两个条件。

  四、分层练习,内化提升(预设11分钟)

  1.完成第63页“练一练”。学生先独立思考并作出判断,再说出判断理由。

  2.做练习十三第1—3题。第1、2题,学生先算一算,想一想,再交流汇报。第3题学生先画出放大后的图形,计算它们的周长和面积,再思考题中的两个问题。

  3.学生举例并说明理由。

  先小组交流,然后全班交流。

  4.判断并说理。“小张跳高的高度和他的身高”成正比例。

  1.引导学生有条理地说明判断的思考过程。

  2.通过讨论使学生进一步明白:只有当相关联的量中每一组对应数的比值一定时,这两种量才成正比例。

  3.生活中哪些量之间存在比例关系?我们学过的数量关系中,哪些是正比例关系?下面进行一个举例和说理比赛,各小组至少举一个正比例关系的例子,并说明理由。组织学生“举例及说理”交流。

  4.老师也举了一个正比例的例子,请大家和我作一辩论。

  小张跳高的高度和他的身高。让学生应用正比例的意义,尝试着判断数量之间的关系,是对正比例意义学习的强化,还培养了学生的应用意识。

  1.学生独立作业,教师巡视,个别辅导差生。

  2.学生完成作业后,反馈矫正。

  3.引导学生自我评价课堂学习表现。

  教学反思

  我是这样预设的,以例1为导路线,通过说、想、听等环节刺激学生的感觉器官,“试一试”完全尊重学生的自主权,根据学习菜单让学生独立完成,讲练结合,尽量做到老师少讲、精讲,时间控制在(15分钟)左右,学生主栽着整个课堂。苏霍姆林斯基曾说过:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”上完这节课,我更加深刻的体会到这一点:学习活动的主体是学生,开放型的数学教师不仅关注学生的智慧生命,还关注学生的情感价值生命。我深信本节课的后半部分,通过学生自己探索、研究、发现、人人练习的过程,体验到成功的喜悦。

【《正比例》的教学设计】相关文章:

《正比例》教学设计05-25

正比例教学设计10-10

正比例的意义教学设计06-22

正比例函数教学设计与评价介绍10-10

用正比例解决问题教学设计(精选11篇)04-23

正比例的意义教案设计08-24

正比例的意义教学教案09-10

《正比例的意义》的教案教学09-27

六年级数学《正比例》教学设计11-18