教学设计 百文网手机站

《圆的周长》数学教学设计

时间:2022-10-26 13:10:58 教学设计 我要投稿

《圆的周长》数学教学设计(精选10篇)

  作为一名优秀的教育工作者,时常需要用到教案,借助教案可以有效提升自己的教学能力。那么大家知道正规的教案是怎么写的吗?下面是小编整理的《圆的周长》数学教案教学设计,希望能够帮助到大家。

《圆的周长》数学教学设计(精选10篇)

  《圆的周长》数学教学设计 篇1

  教学目标:

  1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的 周长计算公式;

  2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

  3、培养学生情感,使学生受到爱国主义教育。

  教学重点:推导圆周长的计算公式。

  教学难点:理解圆周率的意义。

  教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。

  教学过程:

  一、启发

  1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)

  2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?

  揭示课题。(板书:圆的周长)

  二、探究

  1、观察:看屏幕上的圆,说一说什么叫圆的周长?

  2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?

  3、比一比:拿出两个大小不同的圆形纸片。

  哪个圆的周长长一些?

  4、量一量:(分小组合作)

  学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。

  5、信息反馈: ① 小组汇报所测量的圆的周长是多少?

  板书: 周长

  ○ 12cm多一些

  ○ 31cm多一 些 ○ 47cm多一些

  ② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)

  ③(课件演示)绳测法和滚动法的操作过程;

  ④讨论:能用这方法测量出这个圆的周长吗?

  (教师演示)拿一根栓了重物的绳子在空中抡了一圈。.

  如何才知道它的周长呢 ?

  6、①猜一猜: 圆的周长和圆的什么有关系?

  ②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的周长和它的直径有关系)

  7、①再猜 一猜,圆的周长和它的直径有什么样的关系?

  ②学生分成四人小组,测量、计算、讨论圆和直径的关系。

  ③小组汇报测量结果。

  板书: 周长 直径

  ○ 12cm多一些 4cm

  ○ 31cm多一 些 10cm ○ 47cm多一些 15cm

  结论:圆的周长是直径的3倍多一些。

  ④课件出示:验证学生发现的规律是否具有普遍性。

  ⑤小结:无论圆的大小、圆的周长总是它直径的3倍多一些。

  6、介绍圆周率,结合进行爱国主义教育。

  ①教师引出圆周率,介绍用字母来表示,并介绍读法。

  ②出示祖冲之画像,配音介绍祖冲之及圆周率知识(3.14)

  ③对学生进行爱国主义思想教育。

  7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?

  (圆的周长=直径圆周率)(C=D或C=2r)

  三、认知

  1、让学生把测量的三个圆用公式计算出三个圆的周长来。

  2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。

  (绳子的长度就是圆的半径)

  3、抢答:①D=1分米,C= ?

  ②r=1厘米,C=?

  ③C=12.56米,D=?

  4、出示例1,让学生独立计算。

  5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)

  四、评议

  1、本节课你学到了什么?有什么体会?有何感受?

  2、本节课学习主要采用了什么方法?

  3、本节课学习后对你生活有什么帮助?

  4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?

  《圆的周长》数学教学设计 篇2

  【教学内容

  教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

  【教学目标

  1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

  2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

  【教学重、难点

  掌握并理解圆的周长计算公式及其推导过程。

  【教具、学具准备

  圆规、直尺、课件、圆纸片、线。

  【教学过程

  一、导入新课

  出示情境图:谁的铁环滚一圈的距离长一些?为什么?

  教师:铁环滚动一周的距离我们就叫做铁环的周长。

  教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

  板书课题:圆的周长。

  二、感知圆的周长与直径的关系

  1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

  学生指出并回答。(略)

  2.观察。

  课件演示右图:

  问题:这两个圆周长有什么关系?你是怎么知道的?

  小结:直径相等,圆的周长就相等。

  3.课件演示右图:

  问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

  4.小结。

  问题:通过刚才的观察,你有什么发现?

  学生:圆的周长和直径有关系。

  三、探究圆的周长与直径的倍数关系

  圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

  1.小组讨论,制定探究步骤。

  出示探究建议:

  (1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。

  2.说明活动要求。

  每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

  圆的直径圆的周长周长除以直径的商(保留两位小数)

  3.小组合作,进行探究。

  4.汇报交流。

  (1)交流测量的方法。

  提问:谁来介绍一下,你们组是怎样测量圆的周长的?

  学生汇报测量的方法。(绳绕法、滚动法……)

  教师:在这些方法中,最欣赏哪个组的方法?

  小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

  (2)交流计算方法和结论。

  提问:观察这些计算结果,你有什么发现?你还有哪些了解?

  学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

  5.介绍圆周率。

  圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到2061亿位。

  6.总结圆周长的计算方法。

  问题:你怎样理解周长/直径=π?你还能知道什么?

  结论:c=πd,d=c/π,c =2πr,r=c/2π。

  说明:为了计算方便,我们把π近似的取为3.14。

  7.教学例2。

  让学生独立列式计算,提示用估算检查计算结果。

  [评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

  四、巩固练习

  (一)判断。

  1.π=3.14。()

  2.计算圆的周长必须知道圆的直径。()

  3.只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1.较大的圆的圆周率()较小的圆的圆周率。

  a.大于b.小于c.等于

  2.半圆的周长()圆周长。

  a.大于b.小于c.等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

  五、课堂小结

  通过这堂课的学习,你有什么收获?你还有什么问题?

  六、课堂作业

  1.课堂活动第1、2题。

  将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

  2.练习五第1~5题。

  在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

  七、课后作业

  1.求下面各圆的周长。

  (1)d=2米(2)d=1.5厘米(3)d=4分米

  2.求下面各圆的周长。

  (1)r=6分米(2)r=1.5厘米(3)r=3米

  [评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

  《圆的周长》数学教学设计 篇3

  【教学目标】

  1、 让学生知道什么是圆的周长。

  2、 理解并掌握圆周率的意义和近似值。

  3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

  5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  6、 培养学生的观察、比较、分析、综合及动手操作能力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、 教师准备图片。

  【教学过程】

  一、激情导入

  1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?

  2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

  二、探究新知

  (一) 复习正方形的周长,猜想圆的周长可能和什么有关系。

  1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

  2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

  3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)

  4、 猜想:你觉得圆的周长可能和什么有关系?

  (二) 测量验证

  1、 教师提问:你能不能想出一个好办法来测量它的周长呢?

  ① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

  ② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

  2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ②观察数据,对比发现。

  提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  3、 比较数据,揭示关系

  正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

  (三) 介绍圆周率

  1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

  2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

  3、 小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

  圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母 “∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

  (四) 推导公式

  1、 到现在,你会计算圆的周长吗?怎样算?

  2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

  3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?

  三、运用公式解决问题

  1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

  2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  3、 钟面直径40厘米,钟面的周长是多少厘米?

  4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?

  5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  四、课堂小结

  通过这节课的学习你想和大家说点什么?

  这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。(作者:山东省临清市唐园镇中心小学 张延平)

  《圆的周长》数学教学设计 篇4

  教学内容:

  教学目标:

  1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

  2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

  3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

  教学重点:理解圆周率,能计算圆的周长。

  教学难点:探索并理解圆的周长与直径的商为定值。

  教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

  教学策略:自主探索、讨论交流、点拨与练习

  教学程序:

  一、激活目标

  出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

  二、活动建构

  1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

  2、介绍圆周率的由来。

  任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

  组织学生阅读资料,谈感受。

  3、推导出:c=πd或c=2πr

  4、计算花坛的周长,解决相关问题。

  圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

  三、解释应用

  一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

  四、反馈测评

  1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

  15厘米

  A

  B

  2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?

  3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

  五、课堂小结

  我的最大收获是什么?我有什么遗憾?我有什么疑问?

  希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

  《圆的周长》数学教学设计 篇5

  教学内容:教材第62-64页圆的周长。

  教学目标:

  1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

  2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

  3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

  教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

  教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

  教学设计:

  创设情境,揭示课题

  创设情境,认识圆的周长。

  师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

  师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

  设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

  引导探究,展开新课

  1.情境导入,借助教具直观感知,认识圆的周长。

  (1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

  (2)你知道圆的周长指的是什么吗?

  让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

  (3)围成圆周长的是一条什么线?

  明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

  2.测量圆的周长。

  (1)滚动法。

  拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

  滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

  小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

  (2)绕绳法。

  课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

  绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

  (3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

  教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

  经过对比,感受滚动法和绕绳法两种测量方法的局限性。

  3.操作实验,探究圆的周长和直径的关系。

  (1)观察猜想:圆的周长与它的什么有关呢?

  学生猜想:可能与它的直径或半径有关。

  课件演示:圆的周长随着直径或者半径的变化而变化。

  (2)动手操作,找出规律。

  四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

  周长c(cm)直径d(cm)的比值(保留两位小数)

  3.14213.14

  9.533.17

  12.643.15

  15.853.16

  31.4103.14

  (3)观察表中记录的测量数据和计算结果。

  ①你发现周长与直径的比值有什么特点?(比值都是三点几)

  ②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

  (4)进一步验证圆的周长总是直径的3倍多一些。

  下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

  (5)认识圆周率。

  ①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

  ②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

  ③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

  ④感受文明,激发情感。

  结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

  (6)总结圆的周长的计算公式。

  ①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

  ②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

  ③小结:圆的周长总是它直径的π倍。

  (7)进一步明确复习题答案。

  结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

  4.学以致用。

  课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

  学生读题后自己完成。让学生板演。

  c=2πr

  2×3.14×33=207.24(cm)≈2(m)

  1km=1000m

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

  设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

  巩固练习,提升能力

  1.完成教材64页1题。

  2.判断。

  (1)圆的周长是直径的3.14倍。( )

  (2)圆的周长等于圆周率与直径的乘积。( )

  (3)当半径为3cm时,圆的周长为18.84cm。( )

  (4)半圆的周长是圆周长的一半。( )

  3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

  4.完成教材66页7、8题。

  课堂总结,评价拓展

  本节课你有什么收获?

  布置作业,巩固新知

  教材66页9、10题。

  板书设计:

  圆的周长

  圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

  圆的周长总是直径的3倍多一些。

  圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

  《圆的周长》数学教学设计 篇6

  教材分析

  (可以从以下几个方面进行阐述,不必面面俱到)

  l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

  l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

  教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

  在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

  在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

  学情分析

  (可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

  教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

  l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

  l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

  在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

  教学目标

  (教学目标的确定应注意按照新课程的三维目标体系进行分析)

  1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

  2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

  3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

  教学重点和难点

  教学重点:正确计算圆的周长

  教学难点:理解圆周率的意义,推倒圆周长的计算公式。

  教学流程示意

  (按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

  一、创设情境,认识周长

  二、小组合作,探究求圆周长的方法

  三、运用知识,解决问题

  四、课堂总结

  五、布置作业

  六、教学反思

  教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)

  《圆的周长》数学教学设计 篇7

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B

  课件2:圆的周长与直径的商的关系

  课件3:祖冲之有关资料

  【教学设计】

  【教学过程 】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,

  师:谁能说说正方形的周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,

  师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二 自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

  生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

  生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

  师板:线绕、滚动、拉直 化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

  师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,

  师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  (厘米) 圆的直径

  (厘米) 周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,

  师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

  师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,

  生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

  师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之 )

  师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:Cd= C= C=d

  d=2r C=2 C2=r

  《圆的周长》数学教学设计 篇8

  教学目标

  1.使学生认识圆的周长,初步理解圆周率的意义。

  2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点和难点

  推导圆周长的计算公式。理解圆周率的意义。

  教学过程设计

  (一)复习准备

  上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

  (二)学习新课

  我们这节课就来研究圆的周长。(板书:圆的周长)

  我想问问同学,你们都带了哪些圆形实物?

  两人互相指指圆的周长在哪儿?

  谁愿意到前面来指一指老师手里这个圆的.周长。

  谁跟他指得不一佯?为什么这样指不行?

  老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

  老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

  哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

  请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

  (学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

  请小组代表汇报本组的实验过程和实验结果。

  同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

  (师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

  看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

  想一想,以前我们学过哪些几何图形的周长?

  长方形的周长和谁有关系?有什么关系?

  正方形的周长和谁有关系?有什么关系?

  圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

  (用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

  我们得出了圆的周长和直径有关系。

  (板书:圆的周长 直径)

  这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

  (学生分小组讨论。)

  通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

  是不是这样呢?我们来验证一下。

  (电脑演示:圆的周长是直径的3倍多一些。)

  这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

  谁能说说圆周率是怎么得来的?

  请同学们看书上是怎么说的?

  早在2000年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

  (出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

  约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

  我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

  圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

  既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

  现在我们能不能计算黑板上这个圆的周长?

  什么条件不知道?(直径。)

  谁来测直径,用分米作单位。(板书:分米)

  如果直径是2分米,半径就是几分米?

  用半径能不能求圆周长?

  现在我们试着用直径或半径来求黑板上圆的周长。

  谁用直径求出圆的周长?

  (板书:3.142=6.28(分米))

  为什么这样列式?

  (板书:圆的周长=直径圆周率)

  如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

  (板书:C=d)

  谁能用半径求圆的周长?为什么这样做?

  如果用字母r表示半径,字母公式怎么表示?

  (板书:C=2r)

  (三)巩固反馈

  1.求出下面各圆的周长。(单位:厘米)

  2.判断,你认为正确画,错误画。

  (1)一个圆的周长总是它的直径的倍。( )

  (2)圆的周长是6.28厘米,它的半径是2厘米。 ( )

  (3)圆周长的一半与半个圆的周长相等。( )

  3.选择:你认为哪个答案正确就举几号卡片。

  (1)车轮滚动一周,所行路程是求车轮的[ ]

  ①半径

  ②直径

  ③周长

  (2)圆形水池的直径是4米,绕池一周长 [ ]

  ①25.12米

  ②12.56米

  ③12.56平方米

  (3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]

  ①A圆大

  ②B圆大

  ③一样大

  4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

  (四)总结全课

  这节课你学会了什么?(引导学生总结本课所学的知识。)

  课堂教学设计说明

  本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

  《圆的周长》数学教学设计 篇9

  教学内容:

  义教六年制小学数学第十一册第110-112页例1。

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

  《圆的周长》数学教学设计 篇10

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:求圆的直径和半径。

  教学难点:灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。458

  2、求出下面各圆的周长。

  C=r3.14223.144=6.28(厘米)=83.14=25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=r

  (3)根据上两个公式,你能知道:

  直径=周长圆周率半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m求:d=?

  解:设直径是x米。

  3.773.143.14x=3.77

  1.2(米)x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c(2)求:r=?

  解:设半径为x米。

  3.142x=1.21.223.14

  6.28x=1.2=0.191

  x=0.1910.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  ⑴3.148

  ⑵3.1482

  ⑶3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?2023.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?2023.14=125.6(厘米)

  45分钟走了多少厘米?125.6=94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、作业。P65-66第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。

【《圆的周长》数学教学设计】相关文章:

圆的周长教学设计03-31

圆的周长教学设计与反思03-16

《圆的周长》优秀教学设计08-12

圆的周长教学设计模板03-25

圆的周长拓展训练教学设计通用08-16

《圆的周长》教学设计(通用11篇)07-26

圆的周长教学设计范文3篇03-05

圆的周长数学教案06-15

五年级数学圆的周长的教学设计12-09