高一数学教学计划(合集15篇)
时间过得真快,总在不经意间流逝,我们又将接触新的知识,学习新的技能,积累新的经验,该好好计划一下接下来的工作了!你所接触过的计划都是什么样子的呢?下面是小编整理的高一数学教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学教学计划1
一、教学分析
1、分析教材
本章教材整体主要分成三大部分:
(1)、圆的标准方程与一般方程;
(2)、直线与圆、圆与圆的位置关系;
(3)、空间直角坐标系以及空间两点间的距离公式。
圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。
2、分析学生
高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想
3、教学重点与难点
重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。
难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。
二、教学目标
1、掌握圆的`定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。
2、掌握直线与圆的位置关系的判定。
3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。
4、培养学生科学探索精神、审美观和理论联系实际思想。
三、教学策略
1、教学模式
本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的
教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。
2、教学方法与手段--充分利用信息技术,合理整合课程资源
采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。
四、对内容安排的说明
本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。
1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。
通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。
2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:
(1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。
(2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。
3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。
用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果翻译成几何结论。
五、教学评价
㈠过程性评价
1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。
2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈
㈡终结性评价
1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。
2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。
高一数学教学计划2
一 指导思想
为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力
3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二 学情分析
1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。
2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
三 教材分析
我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。
四 教法分析
在教学过程中尽量做到以下几个方面:
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五 教学及辅导措施
1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的'知识;注意从已有的知识出发,启发学生思考。
3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6. 重视数学应用意识及应用能力的培养。
六 优、差生名单及辅导措施
1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。
2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。
七 教学进度安排
周 次 | 课时 | 内 容 | 重 点、难 点 |
第1周 | 5 | 任意角和弧度制(2) 任意角的三角函数(3) | 了解任意角的概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。 |
第2周 | 5 | 同角三角函数的基本关系式(3) 三角函数的诱导公式(2) | 诱导公式的探究。运用诱导公式。 |
第3周 | 5 | 两角和与差的正弦、余弦、正切 (5) | 两角和与差的公式及其应用与求值、化简 |
第4周 | 5 | 二倍角的正弦、余弦、正切 (3) 正、余弦函数的图象(2) | 三角函数的倍角公式、和差化积公式 正、余弦函数图象的画法 |
第5周 | 5 | 三角函数图象与性质(4) | 三角函数的图象及其性质。函数思想。 |
第6周 | 5 | 函数y=sin(+)的图象(2)、三角函数模型的简单应用(2) | 用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型 |
第7周 | 5 | 正切函数的图象和性质(3) 已知三角函数值求角(2) | 正切函数的图象和性质 反三角函数的表示 |
第8周 | 5 | 三角函数单元复习 | 知识点的复习+练习卷 |
第9周 | 5 | 平面向量的实际背景及基本概念(2)、平面向量的线性运算(2) | 向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。 |
第10周 | 5 | 平面向量的基本定理及坐标表示(2) 平面向量的数量积(2) | 平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。 |
第11周 | 5 | 平面向量的应用举例(2) | 用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。 |
第12周 | 5 | 向量平移、正弦定理、余弦定理 | 向量平移的公式 |
第13周 | 5 | 简单的三角恒等变换(3) 第三章小结(1) | 以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。 |
第14周 | 5 | 期末复习 | |
第15周 | 5 | 期末复习 | 分章归纳复习+3套模拟测试 |
高一数学教学计划3
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
三、教学内容
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的.性质。
课时分配(14课时)
| 1.1.1 | 集合的含义与表示 | 约1课时 | 9月1日 |
| 1.1.2 | 集合间的基本关系 | 约1课时 | 9月4日 | | 9月12日 |
| 1.1.3 | 集合的基本运算 | 约2课时 | |
| 小结与复习 | 约1课时 | ||
| 1.2.1 | 函数的概念 | 约2课时 | |
| 1.2.2 | 函数的表示法 | 约2课时 | 9月13日 | | 9月25日 |
| 1.3.1 | 单调性与最大(小)值 | 约2课时 | |
| 1.3.2 | 奇偶性 | 约1课时 | |
| 小结与复习 | 约2课时 |
第二章基本初等函数(I)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
| 2.1.1 | 引言、指数与指数幂的运算 | 约3课时 | 9月27日30日 |
| 2.1.2 | 指数函数及其性质 | 约3课时 | 10月8日10日 |
| 2.2.1 | 对数与对数运算 | 约3课时 | 10月11日14日 |
| 2.2.2 | 对数函数及其性质 | 约3课时 | 10月15日18日 |
| 2.3 | 幂函数 | 约1课时 | 10月19日24日 |
| 小结 | 约2课时 |
第三章函数的应用
1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
| 3.1.1 | 方程的根与函数的零点 | 约1课时 | 10月25日 |
| 3.1.2 | 用二分法求方程的近似解 | 约2课时 | 10月26日27日 |
| 3.2.1 | 几类不同增长的函数模型 | 约2课时 | 10月30日 | 11月3日 |
| 3.2.2 | 函数模型的应用实例 | 约2课时 | |
| 小结 | 约1课时 |
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
高一数学教学计划4
一、具体目标:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的'一些数学模式进行思考和作出确定。
5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。
6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学……
二、本学期要到达的教学目标
1、双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其资料反映出来的数学思想和方法。在基本技能方面能按照必须的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2、本事培养:
能运用数学概念、思想方法,辨明数学关系,构成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,构成数学的意思;从而经过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3、思想教育:
培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
三、进度授课计划及进度表
(略)
高一数学教学计划5
一、基本情况分析:
1、学生情况分析:4个重点班的学生,基础比较好,学习积极性高。普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。
2、教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。
二、教学内容:
本学期的数学教学内容是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时达到110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。
三、本学期教学目标
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
培养学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
四、教学计划:
本学期的期中考试(预计在4月14号至4月17号进行)涵盖的内容为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。
我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:
(一单元)任意角的三角函数
§4.1角的概念的'推广3课时
§4.2弧度制3课时
§4.3任意角的三角函数3~4课时
§4.4同角三角函数的基本关系4课时
§4.5正弦、余弦的诱导公式4课时
复习课(习题课)4课时
单元测试及讲评2课时
(二单元)两角和与差的三角函数
§4.6两角和与差的正弦、余弦、正切7课时
习题课3课时
§4.7两倍角的正弦、余弦、正切4课时
习题课2课时
单元测试及讲评2课时
(三单元)三角函数的图象及性质
§4.8正弦、余弦函数的图象和性质5课时
习题课2课时
§4.9函数的图象4课时总计授课53课时,余下课时可安排期中复习。
期中考试后的授课计划:
§4.10正切函数的图象和性质3课时
§4.11已知三角函数值求角4课时
习题课2课时
第四章复习4课时
第五章
(一单元)向量及其运算
§5.1向量1课时
§5.2向量的加减法2课时
§5.3实数与向量的积3课时
§5.4平面向量的坐标计算3课时
§5.5线段的定比分点2课时
§5.6平面向量的数量积及运算律3课时
§5.7平面向量数量积的坐标表示2课时
§5.8平移2课时
习题课3课时
单元测试与讲评(随堂)2课时
§5.9正弦、余弦定理5课时
§5.10解斜三角形应用举例2课时
实习与研究性课题4课时
习题课3课时
单元测试与讲评2课时
总结:以上就是本学期的数学教学计划,希望能对你有所帮助,如有不足之处,请批评指正!
高一数学教学计划6
1、指点思惟:
(1)跟着本质教导的深化睁开,《课程计划》提出了“教导要面向天下,面向将来,面向古代化”以及“教导必需为社会主义古代化建立效劳,必需与消费休息相分离,培育德、智、体等方面片面开展的社会主义奇迹的建立者以及接棒人”的指点思惟以及课程理念以及变革要点。使先生把握处置社会主义古代化建立以及进一步进修古代化迷信技能所需求的数学常识以及根本技艺。其内收留包含代数、多少、三角的根本观点、纪律以及它们反应进去的思惟办法,几率、统计的开端常识,较量争论机的运用等。
(2)培育先生的逻辑思想才能、运算才能、空间设想才能,和综合使用无关数学常识剖析成绩息争决成绩的才能。使先生逐渐地学会察看、剖析、综合、比拟、笼统、归纳综合、探究以及立异的才能;使用归结、归纳以及类比的办法停止推理,并精确地、有层次地表白推理进程的才能。
(3)依据数学的学科特色,增强进修目标性的教导,进步先生进修数学的盲目心以及兴味,培育先生杰出的进修习气,脚踏实地的迷信立场,固执的进修毅力以及自力考虑、探究立异的肉体。
(4)使先生具备必定的数学视线,逐渐看法数学的迷信代价、使用代价以及文明代价,构成批驳性的思想习气,崇尚数学的感性肉体,领会数学的美学意思,了解数学中遍及存正在着的活动、变革、互相联络以及互相转化的景象,从而进一步建立辩证唯心主义以及汗青唯心主义天下不雅。
(5)学会经过搜集信息、处置数据、制造图象、剖析缘由、推出论断来处理实践成绩的'思想办法以及操纵办法。
(6)本学期是高一的紧张期间,教员承当着两重义务,既要不时夯实根底,增强综合才能的培育,又要浸透无关高考的思惟办法,为三年的进修做好预备。
2、学情份析及相干办法:
高一作为肇端年级,作为从任务教导阶段迈进本质教导征程的顺应阶段,该有的是一份固执。他的非凡性就正在于它的超过性,抱负的期盼与学法的渐变,难度的增强与惰性的天生等等冲突抵触随同着高一重生的生长,面临新课本的咱们也是边探索边改动,建立新的教授教养理念,并落真实讲堂教授教养的各个关键,才干没有负众看。咱们要从先生的看法程度以及实践才能动身,研讨先生的心思特点,做好初三与高一的跟尾任务,协助先生处理好从初中到高中进修办法的过渡。从高一同就留意培育先生杰出的数学思想办法,杰出的进修立场以及进修习气,以顺应高中贯通性的进修办法。详细办法以下:
(1)留意研讨先生,做好初、高中进修办法的跟尾任务。
(2)会合精神打好根底,分项打破难点.所列根底常识根据课程规范计划,着眼于根底常识与重点内收留,要充沛注重根底常识、根本技艺、根本办法的教授教养,为进一步的进修打好坚固的根底,切勿忙于过早的拔高,上困难。同时应放眼高中教授教养全局,留意高考命题中的常识请求,才能请求及新趋向,如许才干兼顾布置,按部就班,使高一的数学教授教养与高中教授教养的全局无机分离。.
(3)培育先生解答考题的才能,经过例题,从方式以及内收留两方面临所学常识停止才能方面的剖析,领导先生理解数学需求哪些才能请求。
(4)让先生经过单位测验,检测本人的实践使用才能,从而实时总结经历,找出缺乏,做好充沛的预备
(5)抓好尖子生与落后生的教导任务,提早睁开数学奥竞提拔以及数学根底教导。
(6)留意使用古代化教授教养手腕辅佐数学教授教养;留意使用投影仪、电脑软件等古代化教授教养手腕辅佐教授教养,进步讲堂服从,激起先生进修兴味。
高一数学教学计划7
一、指导思想:
使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。
二、基本情况分析:
1、4班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。
5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。
2、4班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。
5班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。
3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:
三、教材分析:
1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。
2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。
3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。
4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的`证明、
5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。
6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。
7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。
8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。
四、教学要求:
1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。
2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。
3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。
4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。
5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。
6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。
7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
高一数学教学计划8
本学期担任高一X1、X2两班的数学教学工作,两班学生共有X人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别X1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。
2、培养学生的运算能力。
(1)通过三角函数求值与化简问题的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
二、教学要求
(一)三角函数
1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算.
2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式.
3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力
4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆).
5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的`图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A,ω、φ的物理意义.
6.会由已知三角函数值求角.并会用符号arcsinx、arccosx、arctanx表示角。
(二)平面向量
1理解向量的概念,掌握向量的几何表示,了解共线问量的概念
2掌握向量的加法与减法
3掌握实数与向量的积,理解两个向量共线的充要条件
4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件
6掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式
7掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力
8通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力
9通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流.
三、教学重点
1、掌握同角三角函数的基本关系式
2.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图。
4.掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形
四、教学难点
1.函数y=Asin(ωx+φ)的简图
2.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象
3.掌握正弦定理、余弦定理,并能运用它们解斜三角形
五、工作措施.
1、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。
(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。
课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
(1)加强数学数学竞赛的指导,提高学习兴趣。
(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。
(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。
3、搞好单元考试、阶段性考试的分析。
学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。
六、进度安排.
第四章三角函数
§4.1角的概念的推广………………………………………………………………………………2课时
§4.2弧度制…………………………………………………………………………………………2课时
§4.3任意角的三角函数……………………………………………………………………………2课时
§4.4同角三角函数的关系…………………………………………………………………………2课时
§4.5诱导公式………………………………………………………………………………………2课时
§4.6两角和与差三角函数…………………………………………………………………………7课时
§4.7二倍角公式……………………………………………………………………………………3课时
§4.8三角函数的图象与性质………………………………………………………………………4课时
§4.9函数y=sin(ωx+φ)的图象…………………………………………………………………3课时
§4.10正切函数的图象与性质………………………………………………………………………3课时
§4.11给值求角………………………………………………………………………………………4课时
第五章平面向量…………………
§5.1向量……………………………………………………………………………………………1课时
§5.2向量的加法及减法……………………………………………………………………………2课时
§5.3实数与向量的积………………………………………………………………………………2课时
§5.4平面向量的坐标运算…………………………………………………………………………2课时
§5.5线段的定比分点………………………………………………………………………………2课时
§5.6平面向量的坐标运算…………………………………………………………………………2课时
§5.7平面向量的数量积及运算律…………………………………………………………………2课时
§5.8平面向量数量积的坐标表示…………………………………………………………………2课时
§5.9正弦定理、余弦定理…………………………………………………………………………2课时
§5.10解斜三角形应用举例…………………………………………………………………………2课时
§5.11实习作业………………………………………………………………………………………2课时
第六章不等式…………………
§6.1不等式的性质…………………………………………………………………………………3课时
§6.2均值定理………………………………………………………………………………………2课时
§6.3不等式的证明…………………………………………………………………………………6课时
§6.4不等式的解法…………………………………………………………………………………3课时
期末复习20课时
高一数学教学计划9
平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形 。
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的`方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习曲线方程打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
高一数学教学计划10
一、教学目标:
1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.
2.培养广泛联想的能力和热爱数学的态度.
二、教学重点:
在于让学生领悟生活中处处有变量,变量之间充满了关系
教学难点:培养广泛联想的能力和热爱数学的态度
三、教学方法:
探究交流法
四、教学过程
(一)、知识探索:
阅读课文P25页。实例:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?
2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?
问题小结:
1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。
(二)、新课探究——函数概念
1.初中关于函数的定义:
2.从集合的观点出发,函数定义:
给定两个非空数集A和B,如果按照某个对应关系f,对于A中的`任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;
此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。
定义域,值域,对应法则
4.函数值
当x=a时,我们用f(a)表示函数y=f(x)的函数值。
高一数学教学计划11
本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的'同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
高一数学教学计划12
教学目标 :
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力.
教学重点:子集、补集的概念
教学难点 :弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程 设计
(一)导入 新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.
【提出问题】(投影打出)
已知 , , ,问:
1.哪些集合表示方法是列举法.
2.哪些集合表示方法是描述法.
3.将集M、集从集P用图示法表示.
4.分别说出各集合中的元素.
5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.
6.集M中元素与集N有何关系.集M中元素与集P有何关系.
【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (笔练结合板演)
6.集M中任何元素都是集N的.元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作: 读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.
性质:① (任何一个集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例: ,可见,集合 ,是指A、B的所有元素完全相同.
(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2) 判断下列写法是否正确
① A ② A ③ ④A A
性质:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;
(2)如果 , ,则 .
例1 写出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}
②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。
如: {0}。不能写成 ={0}, ∈{0}
例2 见教材P8(解略)
例3 判断下列说法是否正确,如果不正确,请加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 与 不能同时成立.
解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确.空集是任何非空集合的真子集;
(3)不正确. 与 表示同一集合;
(4)不正确. 的所有子集是 ;
(5)正确
(6)不正确.当 时, 与 能同时成立.
例4 用适当的符号( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)设 , , ,则A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
用适当的符号( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提问:见教材P9例子
(二) 全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即
.
A在S中的补集 可用右图中阴影部分表示.
性质: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};
(2)若A={0},则 NA=N*;
(3) RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.
注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.
例如:若 ,当 时, ;当 时,则 .
例5 设全集 , , ,判断 与 之间的关系.
高一数学教学计划13
为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:
一、工作目标:
高一下学期的工作是第二册课本教学任务;
二、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2。积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的`习惯。
三、教学措施:
1.转变教师的教学方式转变学生的学习方式
教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2.发挥备课组的集体作用
集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3.详细计划,保证练习质量
教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4.加强辅导工作
对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
高一数学教学计划14
一、学情分析
我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二、教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。
2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。
5、新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三、教学任务与目的
1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。
通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=loga x互为反函数(a > 0,a≠1)。通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。
3、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的.含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。
通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题、
6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。
根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四、教学措施和活动
1、加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。
2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。
4、与学生多沟通、多交流,真正成为学生的良师益友。
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
高一数学教学计划15
教学计划可以帮助教师理清教学思路,提高课堂效率。
●教学目标
(一)教学知识点
1.了解全集的意义.
2.理解补集的概念.
(二)能力训练要求
1.通过概念教学,提高学生逻辑思维能力.
2.通过教学,提高学生分析、解决问题能力.
(三)德育渗透目标 渗透相对的观点.
●教学重点 补集的概念.
●教学难点
补集的有关运算.
●教学方法 发现式教学法 通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.
●教具准备
第一张:(记作1.2.2 A)
●教学过程 Ⅰ.复习回顾
1.集合的子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的`条件是什么?
Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.
请同学们由下面的例子回答问题: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分
由此借助上图总结规律如下: 投影片:(1.2.2 B)
Ⅳ.课时小结
1.能熟练求解一个给定集合的补集.
2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业
【高一数学教学计划】相关文章:
高一数学教学计划07-16
高一数学-教学计划08-17
职高数学高一教学计划09-04
2022高一数学教学计划07-20
制定高一数学教学计划08-25
高一数学教学计划201707-02
高一数学下册教学计划10-13
高一数学教学计划范文07-21
高一数学教学计划人教版07-27
高一数学下册教学计划范文08-02