高一数学教学计划范文锦集八篇
光阴的迅速,一眨眼就过去了,我们又将接触新的知识,学习新的技能,积累新的经验,是时候抽出时间写写计划了。计划到底怎么拟定才合适呢?以下是小编整理的高一数学教学计划8篇,欢迎阅读与收藏。
高一数学教学计划 篇1
教材分析:
解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。
学情分析:
初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。
学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。
教学目标:
①知识与技能
熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集
②过程与方法
经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习
③情感、态度及价值观
在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机
教学重点:
一元二次不等式的解法
教学难点:
解法的探索及发现,关键在于“识图能力”
反思:
今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:
首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。
其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。
在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。
教学程序:
一、复习一元一次不等式及不等式组的解法
以题组形式设计习题
①2x+3>7
②不等式组
③ax>b
二、创设二次不等式的生活背景实例,引入课题
采用课本上的实例,有关网络收费问题
三、一元二次不等式的解法探索
(1)
在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。
由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。
(2)
采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。
之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。
反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。
四、练习环节
可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。
课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。
五、课堂小结
知识,思想、方法及感悟等
六、课后作业
①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组
②课外思考题:
1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同
2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围
变式一:戓将R改为空集,此时结论如何
变式二:仿上,自己改编条件,并解之。
反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。
高一数学教学计划 篇2
一、指导思想:
我们要培养学生在数学课程教学的基础上,提高自身的数学素养,满足个人发展与社会进步的要求。主要目标如下:
1、掌握主要的数学基础知识和基本技能,理解基本的数学概念和数学的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理和数形结合的思想等基本能力。
3、提高分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、要运用的教学方法
1、激发学生的学习兴趣和信心,引发学生的学习热情。
2、用类比,推广,特殊化,化归和数形结合的思想等思想方法的运用,培养学生思考问题的方式,提高数学思维能力,培育学生的探究精神。
3、以具有时代性和现实感的素材创设教学情境,加强数学活动,发展学生的应用意识。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
4、组织学生思考和探索,改进学生的学习方式。是学生养成有逻辑思维的习惯。
三、对学生情况的分析
我现在所教的两个班的学生的学习基础不好,自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是学生的计算能力太差,学生不喜欢去算题,嫌麻烦,特别是遇到复杂点的计算题,学生就怕。因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。在教学时要注重基础知识,争取每一堂课落实一些知识点,掌握主要的知识点。
四、所要采取的应对措施:
1、激发学生的`学习兴趣。由数学活动、故事等吸引学生的兴趣,树立学生的学习信心,提高学生学习的兴趣。
2、注意从实例出发,注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、重视数学应用意识及应用能力的培养。
高一数学教学计划 篇3
一、制定的依据
随着高一新教材的全面实施,本年级数学学科的教学进入了新课程改革实际阶段。本计划制定的依据主要是以下三个:
(1)二期课改的理念:一个为本、三类课程、三维目标
(2)新数学课程标准(详见《广州市中小学数学课程标准》)
(3)三本书:课本、教参、练习册
(4)本校教研组对本学期学科的要求
二、基本情况分析
高一(3)全班共52人,男生24人,女生28人。上学期期末为区统测,平均分为54.1分,合格率为5%,优秀率为0%,低分率为56%。高一(4)全班共53人,男生26人,女生27人。上学期期末为区统测,平均分为50.3分,合格率为3%,优秀率为0%,低分率为62%。
从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。
优势是:
1、有潜力;
2、师生关系比较融洽,互相信任,配合默契。
存在的不足是:
1、聪明有余,而努力不足;
2、男生聪明,上课积极,但不够勤奋、踏实;女生认真,但上课效率不高,学得不够灵活。
3、从期末统测来看,差生的比重大;
4、个别学生懒惰成性,学习态度、学习习惯极差;
5、平时学习不够用心,自觉,专心思考、钻研的时间太少;
6、一些同学学习成绩起伏大,不稳定;
7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;
8、学习兴趣,动力,上进心不足。
三、本学期力争达到的目标
1、完成三类课程的教学任务。基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。
2、完成新数学课程标准规定的教学目标。
3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。
4、转化学困生,提高成绩。有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。
5、一手提高优秀率,一手减少不及格人数,力争班与班之间无明显差距。
四、具体措施
1、从期末统测来看,学困生的比重大,优秀率没有。为此要进行分层教学,学困生要注重基本题、常规题的反复操练,增强他们对数学学习的信心和兴趣。好学生要避免无谓失分的情况,注重数学思想、方法、能力的培养,着眼于高三。总而言之,学困生还是继续注重双基的训练,将做过,讲过的题目再反复操练。另外也不能忽略了高分学生的培养,给好学生布置一些有质量的课外题,定期查阅,批改,答疑。这样,通过抓两头,促中间,带动整体水平的提高。
2、提高教学质量,要抓好课堂教学这一主阵地。根据课程标准,教参,切实落实教学目标,做到全面不遗漏,要以考纲为标准。另外,每节课要安排必要的练习时间,多安排随堂测试是有好处的。试题讲解时要突出方法,突出思考、分析过程,要暴露学生解题过程中思维、概念、计算等方面的错误,对学生的错误要有针对性的矫正,补偿。不就题讲题,注意适当的变式。帮助学生掌握解题的方法,积累解题经验,课后要引导学生进行反思、订正,以加深对概念的理解,方法的掌握。
3、从期末统测看学生应用能力明显不足。教师要通过平时教学培养学生阅读审题、数学建模的能力。让学生熟悉一些常见的实际问题的背景,及解决这些问题的相关数学知识。
4、期末统测中选择题普遍得分不高,应引起我们的重视。由于选择题只有唯一答案,所以解答选择题的策略是:合理、迅速、检验,要善于转化,避免机械套用公式、定理和“小题大做,舍近求远,简单问题复杂化”的不良习惯。另外,由填空题的错误表达和解答题的计算粗心、考虑不全面而造成的无谓失分,导致了分数上不去和好学生考不出高分。所以,为保证得到该得的分数,要求必须认真审题,明确要求,弄清概念,思考全面,正确表达。
5、注重讲练结合。要多安排课堂练习,当堂检测。当日作业,周练,月考要及时安排时间进行讲评。平时要注意练习的有效性(适当题量,恰当难度,精选精练),规范书写,认真批改,及时讲评,反馈矫正(建立错题集,进行再认识)。坚决反对只练不讲,只讲不练。评讲中要针对学生的错因进行分析,找出存在的问题,有针对性地加以弥补缺漏,发现问题要跟踪到题,跟踪到人。本次统测中许多试题平时讲过,练过,考过,但错误仍然很多,值得我们重视与反思。
五、保障措施和可行性
1、关爱学生,严格要求,用情实现师与生的沟通,用景实现教与学的融合;
2、加强基础知识、基本技能、基本方法的教学和基本能力的培养,精心组织教学内容,难度要适当,要追求最有效的训练,要清楚哪些学生需要哪些训练,切实注重部分学生的补差和提高,关注全体学生的学,基本教学要求要有效落实到位;
3、注重加强知识之间的联系和综合,内容和方式要更新,有层次推进,多角度理解,反思总结,重视教与学的方式多样化;
4、激发兴趣,重视过程教学,重视错误分析型学习;
5、重视开放性、研究性问题的教学,关注主观评判性问题的学习,研究新题型,真正发展学生的数学素质,培养其数学能力。
6、结合二期课改新课程标准、教参,扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
7、加大课堂教改力度,培养学生的自主学习能力。
8、加强课外辅导,利用中午和晚间休息时间辅导学生答疑解惑、找学生谈话等等。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
9、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解,过关。
10、学生除配套练习册外,每人订一本《一课一练》作为补充练习,并要求每周写学习感悟与学习疑惑,每人准备一本错题本收集错题,每人在课本留白处做好课堂笔记。另外,我自己有充足的时间与资料,进行习题精选与练习补充。
六、总目标达成度与现阶段教学目标达成度的相关分析
本学期一定要在如何提高课堂效率上下功夫,同时抓平时的学习习惯,学习规范,作业质量等细节问题,切实提高学习的有效性。另外,在上学期的基础上,本学期力争消灭不及格,并使那些因无谓失分而导致分数起伏不定的学生能稳定下来,从而进一步提高优秀率。
目前,我班面临的困难与问题还非常多,好在学生的学习势头保持良好。我和我们班的全体学生,将尽我们所能,力争在本学期能有所收获,更进一步。
七、课堂教学改革与创新、信息技术的应用与整合
1、结合二期课改,将“接受式学习”变为“主动式学习”,“启发式学习”,将“要我学”变为“我要学”,并积极开展拓展性课程,研究性课程,培养学生的创新精神和实践能力。
2、加强基础训练,但要避免“题海”战术,要精讲精练,举一反三,突出方法,总结经验,采取变式训练,专题训练等多种方式。
3、针对本学期三角公式多的特点,设计一些学生学习支持材料,如公式默写表,公式背诵口诀,公式记忆方法,公式小卡片等。
4、借助“TI图形计算器”强大的图形功能以及多媒体教学设备,制作精美课件,辅助教学,使教学内容更加形象直观,通俗易懂。
5、利用“Bb”系统建设e课堂,建设网络学习包。
6、写数学感悟或一周问题,与学生进行书面讨论交流,答疑解惑,给予学法指导。
7、对不同层次的学生进行分层辅导,分层补充课外练习。
8、进行数学演讲,了解数学史,写写数学周记等,提升学生的数学素养与兴趣。
高一数学教学计划 篇4
一、学情分析
这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习空间向量等内容的基础。
二、教学目标
1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法。
2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。
3. 进一步培养学生的空间想象能力与确定性思维能力。
三、教学重点:在空间直角坐标系中点的坐标的确定。
四、教学难点:通过建立空间直角坐标系利用点的坐标来确定点在空间内的位置
五、教学过程
(一)、问题情景
1. 确定一个点在一条直线上的位置的方法。
2. 确定一个点在一个平面内的位置的方法。
3. 如何确定一个点在三维空间内的位置?
例:如图,在房间(立体空间)内如何确定一个同学的头所在位置?
在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数。那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数。要确定同学的头的位置,知道同学的头到地面的距离、到相邻的两个墙面的距离即可。
(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)
教师明晰:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定。为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可。例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)。
这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O-xyz,从而确定了空间点的位置。
(二)、建立模型
1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义。
从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面,yOz平面,zOx平面。
教师进一步明确:
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系。
(2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等。
2. 空间直角坐标系O-xyz中点的坐标。
思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
在学生充分讨论思考之后,教师明确:
(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z)。
(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.
这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z)。
教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念
对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z)。
(三)、例 题 与 练 习
1. 课本135页例1.
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)。
2. 课本135页例2
探究: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)。
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知长方体ABCD-ABCD的边长AB=12,AD=8,AA=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。
注意:此题可以由学生口答,教师点评。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
得出结论:建立不同的坐标系,所得的同一点的坐标也不同。
[练 习]
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:长方体ABCD-ABCD的边长AB=12,AD=8,AA=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。
3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件。
(四)、拓展延伸
分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标。
六、评价设计
1、 练习 : 课本P136. 1、2、3
2、 课堂作业: 课本P138. 1、2
高一数学教学计划 篇5
本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
高一数学教学计划 篇6
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
五、教学进度
周次 课、章、节 教学内容 备注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 数列的概念与简单表示法,等差数列
4 2.3 等差数列的前n项和
5 2.4,2.5 等比数列及前n项和
6 2.5 考试
7 3.1,3.2 不等关系与不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(组)与简单线性规划问题,基本不等式
9 考试,复习
10 期中考试
11 1.1,1.2 空间几何体的结构,三视图,直观图
12 1.3 空间几何体的表面积与体积
13 2.1,2.2 空间点、直线、平面的位置关系,直线、平面平行的判定及其性质
14 2.3 直线、平面的判定及其性质
15 3.1,3.2 直线的倾斜角与斜率,直线方程
16 3.3 直线的交点坐标与距离公式
17 4.1,4.2 圆的方程,直线、圆的位置关系
18 4.3 空间直角坐标系
19 复习
20 考试
高一数学教学计划 篇7
教学目标
1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。
2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。
3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。
教学重点、难点
重点:幂函数的性质及运用
难点:幂函数图象和性质的发现过程
教学方法:问题探究法 教具:多媒体
教学过程
一、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?
(总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解
由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。
教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。
幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)
2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?
(学生讨论,教师引导。学生回答。)
3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?
(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)
例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x
(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)
4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?
(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1
让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)
教师总评:幂函数的性质
(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),
(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,
(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。
5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?
学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。
例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。
例4简单应用1:比较下列各组中两个值的大小,并说明理由:
①0.75 ,0.76 ;
②(-0.95) ,(-0.96) ;
③0.23 ,0.24 ;
④0.31 ,0.31
例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。
例6简单应用2:
已知(a+1)<(3-2a) ,试求a的取值范围。
课堂小结
今天的学习内容和方法有哪些?你有哪些收获和经验?
1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。
布置作业:
课本p.73 2、3、4、思考5
高一数学教学计划 篇8
本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。
I这是指数函数在本章的位置。
指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。
指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。
Ⅱ.教学目标设置
1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。
2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。
3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。
4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。
Ⅲ.学生学情分析
授课班级学生为南京师大附中实验班学生。
1。学生已有认知基础
学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。
2。达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。
3。难点及突破策略
难点:1。 对研究函数的一般方法的认识。
2。 自主选择底数不当导致归纳所得结论片面。
突破策略:
1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。
2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。
3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。
Ⅳ.教学策略设计
根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。
学生的自主学习,具体落实在三个环节:
(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。
(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。
(3)性质应用阶段,学生自主举例说明指数函数性质的应用。
研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。
Ⅴ.教学过程设计
1。创设情境建构概念
师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?
师:大家知道细胞分裂的规律吗?(出示情境问题)
[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?
[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?
[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。
师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?
〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?
[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。
[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。
[教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。
Ⅵ.教后反思回顾
一、对于指数函数概念的认识
指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。
二、对于培养学生思维习惯的考虑
在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。
三、关于设计定位的反思
本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。
【高一数学教学计划范文锦集八篇】相关文章: