教案

七年级数学下册优质课教案

时间:2025-02-26 16:54:48 晓映 教案 我要投稿
  • 相关推荐

七年级数学下册优质课教案范文(精选19篇)

  作为一无名无私奉献的教育工作者,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么你有了解过教案吗?以下是小编整理的七年级数学下册优质课教案范文,希望能够帮助到大家。

七年级数学下册优质课教案范文(精选19篇)

  七年级数学下册优质课教案 1

  教学目的:

  1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:掌握圆锥体积的计算公式。

  教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

  教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的

  (2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

  (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的.圆柱的体积的)还可以怎么说?

  板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh

  拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

  强调:“等底等高”。

  问:Sh表示什么?为什么要乘1/3?

  练习一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

  一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

  2、教学练习四第3题

  (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

  (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  说明:不要漏乘1/3,计算时能约分的要先约分。

  3、巩固练习:完成练习四第4题。

  4、教学例3.

  (1)出示例3

  已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  三、巩固练习

  1、做练习四的第7题。

  学生先独立判断这三句话是否正确,然后全般核对评讲。

  2、做练习四的第8题。

  (1)引导学生学生思考回答以下问题:

  ①这道题已知什么?求什么?

  ②求圆锥的体积必须知道什么?

  ③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  (2)让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习四的第6题。

  (1)指名学生先后回答下面问题:

  ①圆柱的侧面积等于多少?

  ②圆柱的表面积的含义是什么?怎样计算?

  ③圆柱体积的计算公式是什么?

  ④圆锥的体积公式是什么?

  (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

  四、总结

  这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

  七年级数学下册优质课教案 2

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的.含义的同时,培养学生的理解能力和探索意识。

  教学重点:掌握圆柱侧面积和表面积的计算方法。

  教学难点:运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1.指名学生说出圆柱的特征.

  2.怎样求圆柱体的侧面积?

  3.(只列式,不计算)求下列圆柱的侧面积。

  (1)底面周长是3.8dm,高1.5dm。

  (2)底面直径20m,高12m。

  (3)底面半径6cm,高18cm。

  二、新课

  导入:我们以前掌握了长方体和正方体的表面积。那圆柱的表面积又该如何求呢?[板书课题]

  1.理解圆柱表面积的含义.

  (1)圆柱的表面积指什么?让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  (3)如何计算圆柱的表面积?表面积和侧面积有什么不同?

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  2.圆柱表面积的计算

  (1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)

  (2)底面直径6分米,高2分米。

  (3)底面周长12.56米,高3米。

  三、课堂作业:练习二第6题。

  家庭作业:练习二第14题求表面积部分。

  七年级数学下册优质课教案 3

  教学内容:

  教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。

  教学目标:

  1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

  2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

  3、培养学生的自主探索意识,激发学生强烈的求知欲望。

  教学重点:掌握圆锥的.特征。

  教学难点:正确理解圆锥的组成。

  教学准备:学生利用教材附页制作圆锥。

  教学过程:

  一、复习

  同学们,前面我们认识了圆柱,谁能说一说圆柱各部分的名称及其特征?

  二、新课

  出示圆锥实物图,并从实物图中抽象出立体图形。师:像这样的形状叫圆锥,你还见过哪些圆锥形的物体?

  1、圆锥的认识

  (1)让学生拿出准备好的着圆锥看一看,摸一摸,它是由哪几部分组成的?指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

  (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

  (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

  (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。圆锥有多少条高?为什么?(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

  2、小结

  圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

  3、测量圆锥的高

  由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

  (1)先把圆锥的底面放平;

  (2)用一块平板水平地放在圆锥的顶点上面;

  (3)竖直地量出平板和底面之间的距离。读数时要读平板下沿与直尺交会处的数值。

  4、教学圆锥侧面的展开图

  (1)学生猜想圆锥的侧面展开后会是什么图形呢?

  (2)实验来得出圆锥的侧面展开后是一个扇形。

  5、虚拟的圆锥

  (1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将直角三角形制片绕着一条直角边旋转,会形成什么形状?

  (2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

  小结:谁能归纳一下圆锥有什么特征?

  三、课堂练习

  1、做第24页“做一做”的题目。

  让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

  2、练习四的第1题。

  (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

  (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

  3.完成练习四的第2题。

  四、总结

  关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

  七年级数学下册优质课教案 4

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:掌握圆柱体积的计算公式。

  教学难点:圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、复习圆面积计算公式的推导方法及过程。

  2、什么叫物体的体积?长方体、正方体的体积公式是什么?(长方体的体积=长×宽×高,正方体的体积=棱长3,长方体和正方体体积的统一公式=底面积×高)

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的`面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ①这道题已知什么?求什么?

  ②能不能根据公式直接计算?

  ③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正.

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

  4、教学例6

  (1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

  三、巩固练习

  1、做第21页练习三的第1题.

  2、练习三的第2题.

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、布置作业

  练习三第3、4题。

  通过批阅作业,发现圆柱体的表面积正确率极低,主要有几方面原因:1、计算错误;2审题不认真,单位不统一;3、灵活解决问题时,没能正确判断所求面积到底包含哪几部分。为提升正确率,所以今天补充了一节是练习课,主要是指导学生完成教材中的习题。在此,想谈谈练习二的第11、19题。

  第11题教材只要求学生根据切面形状进行连线,其实这题应该充分利用挖掘,不仅培养学生的空间观念,同时还可提升学生解决实际问题的能力。所以在教学中,我补充了如下练习

  (1将一根高5分米的圆柱形木料沿底面直径垂直切成两部分,(如11题第2幅图),这时表面积比原来增加了40平方分米。这根圆柱形木料原来的表面积是多少平方分米?

  (2一个圆柱的侧面展开是一个正方形,正方形的边长是12.56分米,求这个圆柱体的表积。

  第19题解决起来很繁琐,虽然课堂上我给予了学生十分充足的独立尝试练习时间,但在未给予任何提示的情况下全班仅4人全对,另有4人结果计算正确,但却未换算单位,正确率仅为7.4%。所以下次再教时,此题应加大指导力度。建议:先在小组内讨论“求涂油漆的面积也就是求什么?”然后强调单位换算,并复习平方米与平方厘米之间的进率(10000),最后再让学生分步列式解答。第2问要求“一共需要多少元”结合生活实际,学生应主动对计算结果取近似值。

  七年级数学下册优质课教案 5

  教学目标

  1.了解解方程组的基本思想是消元。

  2.了解代入法是消元的一种方法。

  3.会用代入法解二元一次方程组。

  4.培养思维的灵活性,增强学好数学的`信心。

  教学重点

  用代入法解二元一次方程组消元过程。

  教学难点

  灵活消元使计算简便。

  教学过程

  一、引入本课。

  接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?

  二、探究。

  比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

  xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,

  可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?

  15xy9例1:解方程组 2y3x1

  讨论:怎样消去一个未知数?

  解出本题并检验。

  12x3y0例2:解方程组 25x7y1

  讨论:与例1比较本题中是否有与y3x1类似的方程?

  怎样解本题?

  学生完成解题过程。

  草稿纸上检验所得结果。

  简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)

  三、练习

  P27.练习题。

  四、小结

  本节课你有什么收获?

  五、作业

  习题2.2A组第1题。

  七年级数学下册优质课教案 6

  教学目标

  1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念

  2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、

  3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、

  重点:

  探索和掌握平行公理及其推论、

  难点:

  对平行线本质属性的理解,用几何语言描述图形的性质、

  教学过程

  一、创设问题情境

  1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

  学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的'位置关系吗?

  2、教师演示教具、

  顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?

  3、教师组织学生交流并形成共识、

  转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、

  二、平行线定义表示法

  1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、

  直线a与b是平行线,记作“∥”,这里“∥”是平行符号、

  教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、

  2、同一平面内,两条直线的位置关系

  教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系、

  在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、

  三、画图、观察、归纳概括平行公理及平行公理推论

  1、在转动教具木条b的过程中,有几个位置能使b与a平行?

  本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、

  2、用直线和三角尺画平行线、

  已知:直线a,点B,点C、

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  3、通过观察画图、归纳平行公理及推论、

  (1)由学生对照垂线的第一性质说出画图所得的结论、

  (2)在学生充分交流后,教师板书、

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行、

  (3)比较平行公理和垂线的第一条性质、

  共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的

  不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、

  4、归纳平行公理推论、

  (1)学生直观判定过B点、C点的a的平行线b、c是互相平行、

  (2)从直线b、c产生的过程说明直线b∥直线c、

  (3)学生用三角尺与直尺用平推方验证b∥c、

  (4)师生用数学语言表达这个结论,教师板书、

  结果两条直线都与第三条直线平行,那么这条直线也互相平行、

  结合图形,教师引导学生用符号语言表达平行公理推论:

  如果b∥a,c∥a,那么b∥c、

  (5)简单应用、

  练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、

  本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、

  四、作业:课本P16、7,P17、11、

  七年级数学下册优质课教案 7

  教学内容:P29页第1-3题,完成练习五。

  教学目的:

  1、 复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

  2、 学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

  3、 学生认真的学习态度。

  教学重点:圆柱、圆锥表面积、体积的计算

  教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别

  教学过程:

  一、复习圆柱

  1、圆柱的特征

  (1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)

  (2)做第29页第1题:指出几个图形中哪些是圆柱。

  2、圆柱的侧面积和表面积

  (1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)

  (2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)

  (3)第29页第2题中求圆柱表面积的部分。

  3、圆柱的.体积

  (1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)

  (2)做第29页第2题中关于圆柱体积的部分。

  4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)

  二、复习圆锥

  1.圆锥的特征

  (1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)

  (2)做第91页第1题的下半题和第2题的第(3)小题.

  让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物.

  2.圆锥的体积.

  (1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

  (2)做第29页第2题中有关圆锥体积的部分。

  三、课堂练习

  1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)

  2、做练习五的第2题。

  (1)学生审题后思考:求用多少彩纸是求圆柱的什么?

  (2)指名板演,其他学生独立完成于课堂练习本上。

  3、做练习五第5题。(可建议学生用方程解答)

  四、作业

  练习五的第3、4、6题。

  七年级数学下册优质课教案 8

  一、教材内容分析

  相似变换是图形的一种基本变换,通过学生所熟悉的实际生活的现象,认识相似图形,了解相似变换,进而探索相似变换的一些基本性质;并能认识相似变换的现实生活中的一些简单应用,为今后进一步学习相似三角形打下基础。教材尽可能多地让学生主动参与,动手操作,拓展学生思考与探索的空间,在直观感知,操作确认的基础上,努力探索图形之间的变化关系。

  二、教学目标

  1、认识相似图形和相似变换。

  2、了解相似变换的基本性质,会按要求作出简单的图形(经过相似变换后的图形)。

  3、结合教材和联系生活实际,培养学生的学习兴趣和热爱生活的情感。

  三、教材的重点和难点

  1、 教材重点:认识相似图形和相似变换,会按要求作出简单的图形(经过变换后的图形)。

  2、 教学难点:了解相似变换的基本性质

  四、〔教学过程〕

  教学过程 设计说明

  一、创设情景、引出课题。

  出示教材中的图形F和F’(运用投影)引导学生观察图形的特点。

  (学生可能会从图形的形状上去描述,例如图形的.形状一样;也可能从图形的大小上去描述,例如图形的大小不等。)

  教师要引导学生细致思考,回答要全面。

  二、细致观察、认识特点

  由图形F到F’,哪些改变了,哪些没有改变?

  由学生小组讨论,然后填入下列的两个空格中。

  形状: ;大小 。

  从而引出相似图形及相似变换的概念:

  由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变),这样的图形改变叫作相似变换。原图形和经相似变换后得到的像,称它为相似图形,图形的放大和缩小都是相似图形。

  并让学生举一些在现实生活中的相似图形。

  如:按不同比例尺画的地图、在显微镜下观察到的东西与原东西。

  让学生举一些在观察生活中的相似变换的例子。

  如:相片的放大,缩小等。

  例1:如图,把方格纸中的图形作相似变换,放大到形的2倍,并在同一方格纸上画出变换后所得的像。

  图形

  引导学生结合相似变换的概念及其相似图形的特点来解答这个问题。

  1、 取特殊点的方法,在这个方格纸内确定图形的一些特殊点的对应点的位置。然后将它们按原图形的形状用线段连结起来,就得到所得的像。

  通过上述的练习,你能回答下列问题吗?

  1、 将一个图形作相似变换时,图形中各个角的大小改变吗?请举例说明。

  2、 将一个图形作相似变换时,图形中各条线段的长改变吗?怎样改变?

  由学生小组讨论,并抽代表回答讨论结果。

  然后归纳出图形相似变换的性质。

  图形的相似变换不改变图形中的每一个角的大小,图形中的每条线段都扩大(或缩小)相同的倍数。

  三、应用新知,体验成功

  补充例题:已知,如图从 ABC 到 A’B’C’是一个相似变换,OA’与OA的长度之比为1 :2

  (1) A’B’与AB的长度之比是多少?

  (2) 已知 ABC的周长为16cm,面积为18cm2

  分别求出 A’B’C’ 的周长和面积。

  A

  A’

  B’ O C’

  B C

  (补充此题的目的是进一步应用前面已经形成的概念解决问题,也为今后学习相似形打好基础)

  四、归纳小结,充实结构

  1、 本节课学习了什么内容。

  2、 如何作出按要求相似变换后的平面图形。

  3、 相似变换的基本性质。 通过观察两幅优美的图片,导入新课,既激发了学生的浓厚的学习兴趣,又为新知识作好铺垫。

  通过小组合作讨论的形式,既提高了学生的参与度,又培养了同学间的合作精神。

  通过让学生举一些现实生活中相似的图形及相似变换的例子;既加深了学生对概念的理解,又培养了学生的学习兴趣和热爱生活的情感。

  在引导学生结合相似变换概念及相似图形的特点解决问题后,并提出问题。

  通过小组讨论的形式来共同探讨、解决问题的方法。一是体现了合作学习;二是教会学生学习数学的方法。在具体的问题中,解决后,要善于归纳规律,从而体现从具体到一般的原则。

  归纳出相似变换的性质后,引导学生运用性质解决问题,从而进一步巩固,深化了相似变换,体现了数学是从一般到具体的过程。并为今后进一步学习相似三角形打下基础。

  设计思路:

  1、本设计按“问题情境——数学活动——概括——巩固应用和拓展”的模式呈现教学内容的,这种方式符合学生的认知规律和学习规律,同时也是课堂教学和设计的立足点。

  2、体现了学生动手实践、自主探索、合作学习的数学学习方式,充分调动学生的学习积极性,提高学生的参与度。

  3、首先引导学生从原有的知识经验中,生成新的知识经验,然后运用它解决问题,形成数学能力。

  七年级数学下册优质课教案 9

  教学目标:

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点:

  数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题

  教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的'马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

  探究新知

  教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论

  问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结

  请学生总结:

  1, 数轴的三个要素;

  2, 数轴的作以及数与点的转化方法。

  本课作业

  1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

  七年级数学下册优质课教案 10

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程

  (师生活动)设计理念

  知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论.

  (数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.

  那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

  所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  分析问题

  解决问题问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

  类似的例子很多,如:

  水位上升-3m,实际表示什么意思呢?

  收人增加-10%,实际表示什么意思呢?

  等等。

  可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?

  (用正数表示其中一种意义的`量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

  七年级数学下册优质课教案 11

  认识三角形教学目标:

  1.知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

  2.过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

  3.情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

  教学重点难点:

  1.重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

  2.难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题.

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的'学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形.

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

  第五环节 练习提高

  活动内容:

  1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的周长 .

  3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

  学生对本节内容归纳为以下两点:

  1.了解了三角形的概念及表示方法;

  2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

  第七环节 探究拓展思考

  1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

  2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看.

  第八环节 作业布置

  七年级数学下册优质课教案 12

  教学目标

  能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。

  渗透“数学建模”思想。化理论。

  提高分析问题解决问题能力。

  教学重点

  分析实际问题列不等式组。

  教学难点

  找实际问题中的不等关系列不等式组。

  有条理的表达思考过程。

  教学过程

  一、创设问题情境。

  本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。

  出示问题:

  某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分a、b两类。a类年票每张100元,持票者每次进入公园无需再购买门票。b类年票每张50元,持票者进入公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买a类年票最合算吗?

  二、建立模形。

  分析题意回答:

  ①游客购买门票,有几种选取择方式?

  ②设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?

  ③买a类年票最合算,应满足什么关系?

  讨论交流,列出不等式组。

  解不等式组,说出问题的答案。

  三、应用。

  学生讨论、交流。

  什么情况下,购买每次10元的.门票最合算。

  什么情况下,购买b类年票最合算?

  学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。

  四、练习。

  某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校有多少寄宿生?有多少间宿舍?

  (提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)

  五、小结

  列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答)

  七年级数学下册优质课教案 13

  一、素质教育目标

  (一)知识教学点

  1.了解有理数除法的定义.

  2.理解倒数的意义.

  3.掌握有理数除法法则,会进行运算.

  (二)能力训练点

  1.通过有理数除法法则的导出及运算,让学生体会转化思想.

  2.培养学生运用数学思想指导思维活动的能力.

  (三)德育渗透点

  通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  (四)美育渗透点

  把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

  2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:除法法则的灵活运用和倒数的概念.

  2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

  3.疑点:对零不能作除数与零没有倒数的理解.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片、彩粉笔.

  六、师生互动活动设计

  教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

  【教法说明】

  同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

  (二)探索新知,讲授新课

  1.倒数.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  学生活动:口答以上题目.

  【教法说明】

  在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

  师问:两个数乘积是1,这两个数有什么关系?

  学生活动:乘积是1的两个数互为倒数.(板书)

  师问:0有倒数吗?为什么?

  学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

  师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

  提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

  【教法说明】

  教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

  (出示投影2)

  求下列各数的倒数:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

  2.计算:8÷(-4).

  计算:8×()=? (-2)

  8÷(-4)=8×().

  再尝试:-16÷(-2)=? -16×()=?

  师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

  学生活动:同桌互相讨论.(一个学生回答)

  师强调后板书:

  [板书]

  【教法说明】

  通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

  (三)尝试反馈,巩固练习

  师在黑板上出示例题.

  计算(1)(-36)÷9, (2)()÷().

  学生尝试做此题目.

  (出示投影3)

  1.计算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.计算:

  (1)()÷(); (2)(-6.5)÷0.13;

  (3)()÷(); (4)÷(-1).

  学生活动:

  1题让学生抢答,教师用复合胶片显示结果.

  2题在练习本上演示,两个同学板演(教师订正).

  【教法说明】

  此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

  提出问题:(1)两数相除,商的.符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

  学生活动:分组讨论,1—2个同学回答.

  [板书]

  2.两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何不等于0的数,都得0.

  【教法说明】

  通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

  (四)变式训练,培养能力

  回顾例1 计算:

  (1)(-36)÷9; (2)()÷().

  提出问题:每个题目你想采用哪种法则计算更简单?

  学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

  (2)题仍用除以一个数等于乘以这个数的倒数较简单.

  提出问题:-36:9=?;:()=?它们都属于除法运算吗?

  学生活动:口答出答案.

  (出示投影4)

  例2 化简下列分数

  例3 计算

  (1)()÷(-6);

  (2)-3.5÷×();

  (3)(-6)÷(-4)×().

  学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

  【教法说明】

  例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

  如在(1)()÷(-6)中.

  根据方法①()÷(-6)=×()=.

  根据方法②()÷(-6)=(24+)×=4+=.

  让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

  (五)归纳小结

  师:今天我们学习了及倒数的概念,回答问题:

  1.的倒数是__________________();

  学生活动:分组讨论。

  【教法说明】

  对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

  八、随堂练习

  1.填空题

  (1)的倒数为__________,相反数为____________,绝对值为___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互为倒数,则;

  (7)或、互为相反数且,则,;

  (8)当时,有意义;

  (9)当时,;

  (10)若,则,和符号是_________,___________.

  2.计算

  (1)-4.5÷()×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作业

  (一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

  2.计算:(1)()×()÷();

  (2)-6÷(-0.25)×.

  3.当,时求的值.

  (二)选做题:1.填空:用“>”“<”“=”号填空

  (1)如果,则,;

  (2)如果,则,;

  (3)如果,则,;

  (4)如果,则,;

  2.判断:正确的打“√”错的打“×”

  (1)( );

  (2)( ).

  3.(1)倒数等于它本身的数是______________.

  (2)互为相反数的数(0除外)商是________________.

  【教法说明】

  必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

  选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

  十、板书设计

  七年级数学下册优质课教案 14

  一、教学目标

  1、理解一个数平方根和算术平方根的意义;

  2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3、通、过本节的训练,提高学生的逻辑思维能力;

  4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合。

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1、已知一正方形面积为50平方米,那么它的边长应为多少?

  2、已知一个数的平方等于1000,那么这个数是多少?

  3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习,填空:

  1、(  )2=9;

  2、(  )2 =0.25;

  3、(  )2=0.0081。

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的平方根是0;

  ±0.09是0.0081的平方根。

  由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  (   )2=—4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的`平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1、一个正数有两个平方根,它们互为相反数。

  2、0有一个平方根,它是0本身。

  3、负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:

  1、用正确的符号表示下列各数的平方根:

  ①26

  ②247

  ③0.2

  ④3

  ⑤

  解:①26的平方根是

  ②247的平方根是

  ③0.2的平方根是

  ④3的平方根是

  ⑤的平方根是

  七年级数学下册优质课教案 15

  教学目标

  1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;

  2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;

  3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

  教学重点:

  寻找实际问题中的不等关系,建立数学模型。

  教学难点:

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

  教学过程(师生活动)

  提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。如果你是校长,你该怎么考虑,如何选择?

  探究新知1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。

  2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:

  (1)什么情况下,到甲商场购买更优惠?

  (2)什么情况下,到乙商场购买更优惠?

  (3)什么情况下,两个商场收费相同?

  3、我们先来考虑方案:

  设购买x台电脑,如果到甲商场购买更优惠。

  问题1:如何列不等式?

  问题2:如何解这个不等式?

  在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x

  去括号,得

  去括号,得:6000+4500x-45004<4800x

  移项且合并,得:-300x<1500

  不等式两边同除以-300,得

  答:购买5台以上电脑时,甲商场更优惠。

  4、让学生自己完成方案(2)与方案(3),并汇报完成情况。

  教师最后作适当点评。

  解决问题甲、乙两个商场以同样的价格出售同样的`商品,同时又各自推出不同的优惠措施。甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费。顾客选择哪个商店购物能获得更多的优惠?

  问题1:这个问题比较复杂。你该从何入手考虑它呢?

  问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑。你认为应分哪几种情况考虑?

  分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。

  最后教师总结分析:

  1、如果累计购物不超过50元,则在两家商场购物花费是一样的;

  2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

  3、如果累计购物超过100元,又有三种情况:

  (1)什么情况下,在甲商场购物花费小?

  (2)什么情况下,在乙商场购物花费小?

  (3)什么情况下,在两家商场购物花费相同?

  上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。

  总结归纳:

  通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。

  布置作业:

  教科书第126页习题9.2第1题(1)(2)第3题1、2。

  七年级数学下册优质课教案 16

  复习目标:

  1、复习基本概念形成知识体系;

  2、会利用图形的分割法求图形的面积。

  复习过程:

  一、板书课题,出示目标:

  同学们,今天,我们一起来复习第六章,本节课的`学习目标是:

  二、指导检测:

  复习目标达到,从认真做检测题开始,下面,请看检测要求:

  检测指导

  1.认真审题,细心计算;

  2. 把字写端正,步骤写完整;

  3. 在十五分钟内完成。

  预祝大家出色完成任务!

  三、学生检测,教师巡视

  A:P58“知识结构图”,完成P60 4、5

  B:学生检测,教师巡视,搜集学生出现的错误,进行第二次备课。

  四、板演、更正答案:

  A:分别让2名学生上堂板演,有错误,鼓励其他同学更正。

  B:对改(下面,比谁能在2分钟内对改完,不出错)

  五、讨论:

  1.独立更正:

  2.小组讨论:(自己不能独立更正的题,小组解疑)

  3.可能出现错误,需要集体讨论:(会了的小组帮助不会的小组解疑,若没有不同答案的且正确的,肯定答案,不讨论。如果有不同意见的,让同学讨论。)

  可能出现错误需讨论的有:

  评:第4题

  (1)坐标对吗?(估计问题不大)

  (2)他路上经过的地方对吗?(估计问题不大)

  (3)图形对吗?(估计问题不大)

  第5题

  (1)红色图形平移的对吗?为什么?

  引导学生说出:可以有两种平移的方法:第一种方法:先向上平移6个单位,再向右平移3个单位;第二种方法:先向右平移3个单位,再向上平移6个单位。

  (2)略

  归纳总结:同学们,通过本节课的学习,你有哪些收获?引导学生说一说解类似题时该注意哪些问题?

  六、课堂作业

  必做题:P60 6、8

  思考题:P61 10

  七年级数学下册优质课教案 17

  教学目标:

  1、能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2、在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3、了解同底数幂乘法的`运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点:

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程:

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.

  2、引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.

  3、引导学生剖析法则

  (1)等号左边是什么运算?

  (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?

  (4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1、完成课本“想一想”:a?a?a等于什么?

  2、通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3、独立处理例2,从实际情境中学会处理问题的方法。

  4、处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:

  计算:

  (1)—a2·a6

  (2)(—x)·(—x)3

  (3)ym·ym+1

  (4)?7?8?73

  (5)?6?63

  (6)?5?53?5?。

  (7)?a?b?a?b?75422

  (8)?b?a?a?b?

  (9)x5·x6·x3

  (10)—b3·b3

  (11)—a·(—a)3

  (12)(—a)2·(—a)3·(—a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1、请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2、完成课本习题1.4中所有习题。

  七年级数学下册优质课教案 18

  教材分析:

  教学目标:

  知识与技能:

  1、经历探索幂的乘方运算性质过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

  2、了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

  过程与方法:

  1、在探索幂的乘方运算性质的过程中,培养和发展学生学习数学的主动性,提高数学表达能力。

  2、体会幂的意义,领悟数学与现实世界的必然联系,发展实践能力。

  情感、态度与价值观:

  通过积极参与数学学习活动,培养学生积极探索、勇于创新的精神和团结合作的学习习惯;在探索过程中培养和发展学生学习数学的主动性,提高数学表达能力。

  教学重点:理解并正确运用幂的乘方的运算性质。

  教学难点:幂的乘方法则的探究过程及运用。

  教学方法:尝试练习法,讨论法,归纳法。

  教学用具:多媒体

  教学过程:

  一、复习旧知:

  1、64表示()个()相乘

  (62)4表示()个()相乘

  a3表示()个()相乘

  (a2)3表示()个()相乘

  【设计意图】在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题,建立新旧知识之间的联系,为新知识的学习奠定理论基础。

  二、创设情境,引入新知

  地球、木星、太阳可以近似低看做是球体。木星、太阳的.半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?(球体的体积公式是V=4/3∏r3其中v是球的体积,r是球的半径)。

  木星的半径是地球的10倍,它的体积是地球的103倍!

  太阳的半径是地球的102倍,它的体积是地球的(102)3倍!

  那么,你知道(102)3等于多少吗?

  【活动注意事项】鼓励学生说出自己的想法,对于学生表达好的,教师要及时加以鼓励,以提高学生的学习兴趣。

  【设计意图】从实际问题引入幂的乘方运算,学生在探索这个问题的过程中,将自然体会到幂的乘方运算的必要性,了解数学与现实世界的联系;同时,多媒体的使用可以让学生直观的感受体积扩大的倍数与半径扩大的倍数之间的关系,提高学生的探究兴趣。

  三、运用实例,探究法则

  1、计算下列各式,并说明理由。

  (1)(62)4(a2)3;(am)2;(am)n

  (am)n=am·am·am·am·

  =am+m+m+m+m

  =amn

  2、归纳法则

  幂的乘方,底数()指数()

  【活动注意事项】学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。

  【设计意图】使学生通过特例的考察,逐步一般化,归纳幂的乘方的运算性质,并用幂的意义加以说明。在这一过程中,学生进一步体会了幂的意义,发展了归纳、符号演算等推理能力和有条理的表达能力。

  四、知识应用:

  1、计算下列各题:

  (1)(102)3;(2)(b5)5;(3)(an)3;

  (4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.

  【活动注意事项】学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义。

  【设计意图】这六道题的设置,由数字到字母,有简单题型,有易错题型,有易混淆题型,可以说充分考虑到了学生的学习特点。同时,让学生感受到运算时,不能直接死板硬套公式,而应根据题型灵活处理。

  2、判断题,错误的予以改正。

  (1)a5+a5=2a10()

  (2)(s3)3=x6()

  (3)(-3)2·(-3)4=(-3)6=-36()

  (4)a6·a4=a24()

  (5)[(m-n)3]4-[(m-n)2]6=0()

  【活动注意事项】教师可以要求学生用自己的语言说明错误的原因。

  【设计意图】学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用,将合并同类项、同底数幂的乘法、幂的乘方等知识区分清楚。

  五、小结与反思:

  1、这节课你学到了哪些知识?

  2、你还有哪些想进一步探究的问题?

  【设计意图】通过学生自己的总结反思过程,让学生自觉的体会、感知本节知识,教师及时从中得到反馈,以便及时加以补充和修正课堂内容。

  六、布置作业:

  1、完成课本习题1.2第1、2题。

  2、拓展练习:

  (1)若(x2)n=x8,则m=()

  (2)若[(x3)m]2=x12,则m=()

  (3)若xm·x2m=2,求x9m的值。

  (4)若a2n=3,求(a3n)4的值。

  (5)已知am=2,an=3,求a2m+3n的值。

  【设计意图】通过不同层次的练习设置,满足不同层次学生的需求。同时,使学生感受到知识的学习是不能死搬硬套的、也不是单纯模仿的。

  七年级数学下册优质课教案 19

  教学目标

  以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根.

  教学重、难点

  重点:了解平方根的概念,求某些非负数的`平方根.

  难点:平方根的意义.

  教学过程

  一、提出问题,创设情境.

  问题1、要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?

  问题2、已知圆的面积是16πcm2,求圆的半径长.

  要想解决这些问题,就来学习本节内容.

  二、想一想:

  1、你能解决上面两个问题吗?这两个问题的实质是什么?

  2、25的平方根只有5吗?为什么?

  3、-4有平方根吗?为什么?

  三、知识引入:

  一个正数a的平方根有两个,它们互为相反数.我们用a表示a的正的平方根,读作

  “根号a”,其中a叫做被开方数.这个根叫做a的算术平方根,另一个负的平方根记为-a.0的平方根是0,0的算术平方根也是0,负数没有平方根.

  求一个数的平方根的运算叫做开平方.

  四、能力、知识、提高

  同学们展示自学结果,老师点拔

  1、情境中的两个问题的实质是已知某数的平方,要求这个数.

  2、概括:如果一个数的平方等于a,那么这个数叫做a的平方根.

  如52=25,(-5)2=25∴25的平方根有两个:5和-5.

  3、任何数的平方都不等于-4,所以-4没有平方根.

  五、知识应用

  1、求下列各数的平方根

  ①49②1.69③(-0.2)2

  2、将下列各数开平方

  ①1②0.09

【七年级数学下册优质课教案】相关文章:

大班数学优质课教案10-18

七年级数学下册教案优秀07-20

七年级数学下册教案范文01-03

人教版七年级数学下册教案优秀07-22

幼儿园数学优质课教案10-07

大班数学优质课教案及教学反思《数学宫》08-10

七年级数学下册教案(通用20篇)10-06

小班优质课教案数学《认识图形》08-15

中班数学优质课认识圆形教案09-06