教案

六年级数学下册教案

时间:2025-03-11 06:56:41 教案 我要投稿

西师版六年级数学下册教案模板

  作为一位兢兢业业的人民教师,就有可能用到教案,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?下面是小编精心整理的西师版六年级数学下册教案模板,欢迎阅读与收藏。

西师版六年级数学下册教案模板

西师版六年级数学下册教案模板1

  [教学目标]:

  1.结合具体情境,体会生活中存在着大量互相依赖的变量。

  2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

  [教材分析]:

  教材通过让学生观察表格、图像、关系式,尝试用自己的语言描述两个变量之间的变化,为后面学习正比例、反比例打下基础,同时体会函数思想。

  教材呈现了三个具体情境,鼓励学生在观察、思考、讨论和交流中,体会在生活情境中,存在着大量互相依赖的变量:一个量变化,另一个量也会随着发生变化,两个变量之间存在着关系。这三个情境分别用表格、图像和关系式呈现变量之间的关系,以使学生体会表示变量之间关系的多种形式。

  [学校及学生状况分析]:

  我校是一所民办实验小学,学校的数学的课堂教学中以学生为本,突显人文性,这样学生喜爱学习数学,敢于在课堂上表现自我,学生有较好的思维能力,探索能力和合作能力。

  [教学过程]:

  一、创设情境,导入新课。

  1、用手势表示出自己从出生到现在身高的变化。

  2、用手势表示出自己从出生到现在体重的变化。

  3、师:身高、体重都会变化,这些都是变化的量。(板书课题)

  二、观察表格,感知变量。

  1、出示小明的体重变化情况表。

  师:这是小明的体重变化情况表。

  (1)从表中你知道了什么信息?

  (2)上表中哪些量在发生变化?

  (3)师生共同画一画小明的体重变化情况折线统计图。

  (4)说一说小明10周岁前的体重是如何随年龄增长而变化的。

  2、说一说。

  (1)我发现( )随( )的增加而增加。

  (2)我发现( )随( )的减少而减少。

  3、师:通过你们举的例子,可以发现什么?

  三、通过读图,感受变量。

  1、师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

  2、出示骆驼体温随时间的.变化统计图。

  3、读懂统计图。

  (1)从图中你知道了什么信息?

  (2)一天中,骆驼体温是多少?最低是多少?

  4、感受量的周期变化。

  (1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

  (2)第二天8时骆驼的体温与前一天8时的体温有什么关系?

  (3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?第十天呢?

  (4)师:每天骆驼的体温总是怎样变化的?

  四、建立模型,感悟变量。

  1、出示叫的蟋蟀叫的次数与气温之间关系的情境。

  2、你能用式子表示这个近似关系吗?

  即气温h=t÷7+3。

  3、理解式子中量的变化。

  师:如果蟋蟀叫了7次,这时的气温大约是多少?

  如果蟋蟀叫了14次,这时的气温大约是多少?

  如果蟋蟀叫了28次呢?

  你能发现蟋蟀叫的次数与气温之间是怎样变化的?

  4、举出而变化的例子。

  5、通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

  五、课堂巩固,加深理解。

  1、连一连,把相互变化的量连起来。

  路程 正方形周长

  边长 购卖数量

  总价 行驶时间

  2、说一说,一个量怎样随另一个量变化。

  (1)一种故事书每本3元,买书的总价与书的本数。

  (2)一个长方形的面积是24平方厘米,长方形的长与宽。

  六、全课小结,谈谈收获。

西师版六年级数学下册教案模板2

  教学内容:

  学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。

  教学目标:

  1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

  2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

  教学重、难点:

  理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

  教学准备:

  教学光盘及多媒体设备

  教学过程:

  一、复习导入

  1.谈话:同学们,上学期我们已经初步学习了有关百分数的一些知识,知道百分数是表示一个数是另一个数的百分之几的数,还学习了解决求一个数是另一个数的百分之几的实际问题。你会解决下面的实际问题吗?

  (出示下列题目,请学生解答。)

  东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?

  五(1)班有男生25人,女生20人,女生人数是男生的百分之几?男生人数是女生的百分之几?

  2.学生独立列式计算后进行交流,重点说说数量关系。

  3.揭示课题:今天这节课我们继续学习有关百分数的知识。

  二、教学例1

  1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

  学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

  提出要求:根据这两个已知条件,你能求出哪些问题?

  引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

  在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

  2.引导思考:

  这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位“1”?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

  小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

  启发:根据上面的讨论,你打算怎样列式解答这个问题?

  学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

  3.进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

  学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

  联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。

  提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

  学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

  三、教学“试一试”

  1.出示问题:原计划造林比实际少百分之几?

  启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

  学生作出猜想后,暂不作评价。

  提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

  2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

  小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

  四、指导完成“练一练”

  1.要求学生自由读题。

  2.提问:你是怎样理解“20xx年在读研究生的人数比20xx年增加了百分之几”这个问题的?

  学生讨论后,要求他们各自列式解答。

  3.根据学生在解答过程中的.表现,相机提问:计算中有没有遇到什么新的问题?

  学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

  五、巩固练习

  1.指导完成练习一第1~3题

  做练习一第1题。

  可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

  做练习一第2题。

  先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

  做练习一第3题。

  先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。

  2.对比练习

  (1)建造一个游泳池,计划投资100万元,实际投资80万元。实际投资比计划节约了百分之几?

  (2)建造一个游泳池,计划投资100万元,实际投资比计划节约20万元。节约了百分之几?

  (3)建造一个游泳池,实际投资100万元,比计划投资节约20万元。节约了百分之几?

  学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。

  3.拓展题。

  (1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)

  (2)从南京开往淮安,甲车行了3小时到达,乙车行了4小时到达。甲车速度比乙车快百分之几?

  六、全课小结

  通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?今天你在课堂上的表现如何?你的同桌呢?

  七、布置作业

  1.课内作业:补充习题第1页。

  求一个数比另一个数多(少)百分之几的实际问题

  例题1 (线段图略)

  解法一:先算实际造林比原计划多多少公顷    解法二:先算实际造林相当于原计划的百分之几

  20-16=4(公顷)                20÷16=1.25=125%

  4÷16=0.25=25%                125%-100%=25%

【六年级数学下册教案】相关文章:

小学数学六年级下册优秀教案07-05

六年级下册数学教案09-09

人教版六年级下册数学教案最新人教版六年级下册数学教案08-11

小学六年级数学下册利息的教案07-14

六年级下册数学教案范文09-03

最新苏教版六年级数学下册教案05-04

人教版六年级下册数学教案09-05

苏教版数学六年级下册教案 苏教版六年级下册数学教案最新版本08-11

代数初步知识六年级数学下册教案06-14

六年级下册数学总复习教案范文09-24