初一数学知识点总结

时间:2024-09-10 10:55:13 初一 我要投稿

初一数学知识点总结集合(15篇)

  总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以有效锻炼我们的语言组织能力,我想我们需要写一份总结了吧。那么总结有什么格式呢?下面是小编为大家整理的初一数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

初一数学知识点总结集合(15篇)

初一数学知识点总结1

  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的`数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初一数学知识点总结2

  概率

  一、事件:

  1、事件分为必然事件、不可能事件、不确定事件。

  2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

  3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

  4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

  二、等可能性:是指几种事件发生的可能性相等。

  1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

  2、必然事件发生的概率为1,记作P(必然事件)=1;

  3、不可能事件发生的概率为0,记作P(不可能事件)=0;

  4、不确定事件发生的概率在0—1之间,记作0

  三、几何概率

  1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

  2、求几何概率:

  (1)首先分析事件所占的面积与总面积的关系;

  (2)然后计算出各部分的面积;

  (3)最后代入公式求出几何概率。

  初一数学学习方法技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:

  冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  6、学会管理:

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的`实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

  提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

  有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

初一数学知识点总结3

  1、单项式:数字与字母的积,叫做单项式。

  2、多项式:几个单项式的和,叫做多项式。

  3、整式:单项式和多项式统称整式。

  4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

  5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

  6、余角:两个角的和为90度,这两个角叫做互为余角。

  7、补角:两个角的和为180度,这两个角叫做互为补角。

  8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

  9、同位角:在“三线八角”中,位置相同的角,就是同位角。

  10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

  11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

  12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

  13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

  14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

  17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的`高线(简称三角形的高)。

  18、全等图形:两个能够重合的图形称为全等图形。

  19、变量:变化的数量,就叫变量。

  20、自变量:在变化的量中主动发生变化的,变叫自变量。

  21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

  22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

  23、对称轴:轴对称图形中对折的直线叫做对称轴。

  24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

初一数学知识点总结4

  1.同一平面内,两直线不平行就相交。

  2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互

  为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

  3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其

  中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足

  5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短;

  7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在

  两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。

  10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题

  11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:

  1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。

  12.★命题:“如果+题设,那么+结论。”

  三角形和多边形

  1.三角形内角和为180°

  2.构成三角形满足的条件:三角形两边之和大于第三边。

  判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边)

  3.三角形边的`取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高

  2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD

  是斜边AB

  上的高,则有ACBCCDAB

  A

  CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等)

  【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角:

  【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为

  【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。

  单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种

  (两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与

  0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。

  【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少?

  平面直角坐标系

  ▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点

  ▲建系原则:原点、正方向、横纵轴名称(即x、y)

  √语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系

  ▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★

  点的平移规律(P51归纳)

  例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳)

  重点题目:P53练习;P543、4题;P557题。2.对称规律▲

  关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数

  关于原点对称,横、纵坐标同时取相反数

  例:P点的坐标为(5,7),则P点

  (1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★

  假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵

  组距轴为“频数”

  6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x

  轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题

  二元一次方程组和不等式、不等式组

  1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分)

  3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342

  步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题)

  数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。

  9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组

  4

  在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。

初一数学知识点总结5

  1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

  2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

  3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠———————。

  4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式。

  单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)

  单项数的`次数:是指单项式中所有字母的指数的和。(注意指数1)

  5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式。特别注意多项式的项包括它前面的性质符号。它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

初一数学知识点总结6

  有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  3、一个数与0相加,仍得这个数。

  有理数加法的运算律

  1、加法的交换律:a+b=b+a;

  2、加法的.结合律:(a+b)+c=a+(b+c)

  有理数减法法则

  减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

  有理数乘法法则

  1、两数相乘,同号为正,异号为负,并把绝对值相乘;

  2、任何数同零相乘都得零;

  3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

初一数学知识点总结7

  1.代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式。

  注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。2.列代数式的几个注意事项:

  13(1)带分数与字母相乘时,要把带分数改成假分数形式,如a×1应写成a;

  223(2)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  a3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;4.有理数:(1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数。不是有理数。p正整数正整数正有理数整数零正分数(2)有理数的分类:①有理数零②有理数负整数

  负整数正分数负有理数分数负分数负分数(3)注意:有理数中,1、0、-1是三个特殊的数。(4)自然数包括:0和正整数。5.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

  a(a0)a(a0)(2)绝对值可表示为:a0(a0)或a;绝对值的问题经常分类讨论;

  aa1a0;

  aa1a0;

  aba。b(4)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|,

  临渊羡鱼,不如退而结网!

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

  0.120.012底数的小数点移动一位,平方数的小数点移动二位。(4)据规律112101006.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  7.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  8.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。9.混合运算法则:先乘方,后乘除,最后加减;10.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

  11.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  ①.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。②.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。

  ③.一元一次方程解法的一般步骤:整理方程,去分母,去括号,移项,合并同类项,系数化为1(检验方程的解)。

  ④.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。12.列方程解应用题的常用公式:

  (1)行程问题:距离=速度时间速度距离距离时间;时间速度(2)工程问题:工作量=工效工时工效工作量工作量工时;工时工效(3)比率问题:部分=全体比率比率部分部分全体;全体比率(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折

  售价成本1,利润=售价-成本,利润率100%;

  成本10(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

  1S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

  3临渊羡鱼,不如退而结网!

  初一下册知识点总结

  1.同底数幂的乘法:aman=am+n,底数不变,指数相加。2.同底数幂的除法:am÷an=am-n,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积。4.零指数与负指数公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0)。注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:

  ①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:

  p(1)若二次三项式x+px+q是完全平方式,则有关系式:q;

  22

  2※(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。1※(3)注意:x2x2。

  xx2127.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。10.合并同类项法则:系数相加,字母与字母的指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  临渊羡鱼,不如退而结网!

  平面几何部分

  1、补角重要性质:同角或等角的补角相等.余角重要性质:同角或等角的余角相等.2、①直线公理:过两点有且只有一条直线.线段公理:两点之间线段最短.

  ②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

  比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.3、三角形的内角和等于180

  三角形的一个外角等于与它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任何一个内角4、n边形的对角线公式:

  n(n-3)2各个角都相等,各条边都相等的多边形叫做正多边形

  5、n边形的内角和公式:180(n-2);多边形的外角和等于3606、判断三条线段能否组成三角形:

  ①a+b>c(ab为最短的两条线段)②a-b

  扩展阅读:初中数学七年级上册知识点总结

  提分数学

  提分数学七年级上知识清单

  第一章有理数

  一.正数和负数

  ⒈正数和负数的概念

  负数:比0小的数正数:比0大的.数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。2.具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃

  支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

  二.有理数

  1.有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

  注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。2.(1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负p分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  提分数学

  正整数正有理数正分数(2)有理数的分类:①按正、负分类:有理数零

  负整数负有理数负分数正整数整数零②按有理数的意义来分:有理数负整数正分数分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  三.数轴

  ⒈数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

  提分数学

  4.数轴上特殊的最大(小)数

  ⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a提分数学

  ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。当a>0时,-a0,那么|a|=a;②如果a0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即

  提分数学

  |a|≥0;注意:|a||b|=|ab|,

  abab⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较

  ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大

  ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

  (3)正数的绝对值越大,这个数越大;(4)正数永远比0大,负数永远比0小;(5)正数大于一切负数;

  (6)大数-小数>0,小数-大数<0.5.绝对值的化简

  ①当a≥0时,|a|=a;②当a≤0时,|a|=-a6.已知一个数的绝对值,求这个数

  一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

  六.有理数的加减法.

  1.有理数的加法法则

  ⑴同号两数相加,取相同的符号,并把绝对值相加;

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0相加,仍得这个数。2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)

  在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加“相反数结合法”;

  提分数学

  ②符号相同的两个数先相加“同号结合法”;③分母相同的数先相加“同分母结合法”;④几个数相加得到整数,先相加“凑整法”;⑤整数与整数、小数与小数相加“同形结合法”。3.加法性质

  一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:⑴当b>0时,a+b>a⑵当b提分数学

  Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)--

  313217+-+-524528321137)+(-+)+(+-)55224818原式=(--

  =-1+0-

  =-1

  Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-3

  18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3

  18=+3

  183121-3+10-14834=(3

  31112-1)+(-3)+1044883=2

  12-3+102316=-3+13

  =10

  16617-12+41122151761)+(-)

  5151122Ⅴ.把带分数拆分后再结合(先拆分后结合)-3+10

  15原式=(-3+10-12+4)+(-+

  =-1+

  411+1522提分数学

  =-1+

  815+3030=-

  730Ⅵ.分组结合

  2-3-4+5+6-7-8+9+66-67-68+69

  原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)

  =0

  Ⅶ.先拆项后结合

  (1+3+5+7+99)-(2+4+6+8+100)

  七.有理数的乘除法

  1.有理数的乘法法则

  法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;

  法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数

  乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a

  1=1(a≠0),就是说aa和

  111互为倒数,即a是的倒数,是a的倒数。aaa1互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是;倒数是本身的数

  a是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.注意:①0没有倒数;

  ②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

  ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);④倒数等于它本身的数是1或-1,不包括0。3.有理数的乘法运算律

  提分数学

  ⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac4.有理数的除法法则

  (1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,即无意义(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得05.有理数的乘除混合运算

  (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  (2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

  a0八.有理数的乘方

  1.乘方的概念

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在a中,a叫做底数,n叫做指数。(1)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;

  0.120.01211(2)据规律2底数的小数点移动一位,平方数的小数点移动二位

  101002

  22

  n2.乘方的性质

  (1)负数的奇次幂是负数,负数的偶次幂的正数;注意:当n为正奇数时:(-a)=-a或(a-b)=-(b-a),当

  n为正偶数时:(-a)=a或(a-b)=(b-a).

  (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

  nnnnnnnn

  九.有理数的混合运算

  做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;

  3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  十.科学记数法

  把一个大于10的数表示成a10的形式(其中1a10,n是正整数),这种记数法是科学记数法

  -9-

  n提分数学

  近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原

  则.

  特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

  等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.

  第二章整式的加减

  一.用字母表示数(代数初步知识)

  1.代数式:用运算符号“+-÷”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。2.代数式书写规范:

  (1)数与字母相乘,或字母与字母相乘中通常使用“”乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;13(4)带分数与字母相乘时,要把带分数改成假分数形式,如a1应写成a;

  223(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  a

  提分数学

  (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做

  a-b和b-a.

  出现除式时,用分数表示;

  (7)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a-b;a与b差的平方是:(a-b);

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数

  是:n-1、n、n+1;

  (4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:a,非正数是:-a.

  2222222

  二.整式

  1.单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。

  2.单项式的系数:单项式中的数字因数;单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  3.单项式的次数:一个单项式中,所有字母的指数和

  4多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。注意:(若a、b、c、p、q是常数)ax+bx+c和x+px+q是常见的两个二次三项式.

  5整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式2

  2

  单项式多项式.

  注意:分母上含有字母的不是整式。

  6.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,

  叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

  提分数学

  三.整式的加减

  1.合并同类项

  2同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  3合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

  4合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。5去括号去括号的法则:

  (1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“”号,把括号和它前面的“”号去掉,括号里各项的符号都要改变。

  6添括号法则:添括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号

  里的各项都要变号.

  7整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  8整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。

  第三章一元一次方程

  1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.

  4一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)

  1注意:未知数在分母中时,它的次数不能看成是1次。如3x,它不是一元一次方程。

  x5解一元一次方程

  提分数学

  方程的解:能使方程左右两边相等的未知数的值叫做方程的解;注意:“方程的解就能代入”验算!解方程:求方程的解的过程叫做解方程。

  等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。

  6移项

  移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。

  移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。

  移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。

  注意:移项时要跨越“=”号,移过的项一定要变号。

  7解一元一次方程的一般步骤:整理方程、去分母、去括号、移项、合并同类项、未知数的系数化为1;(检验方程的解)。

  注意:去分母时不可漏乘不含分母的项。分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解决问题

  列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。关键在于抓住问题中的有关数量的相等关系,列出方程。

  解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系9列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形

  提分数学

  各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  10实际问题的常见类型:

  (1)行程问题:路程=时间速度,时间=

  路程路程,速度=速度时间(单位:路程米、千米;时间秒、分、时;速度米/秒、米/分、千米/小时)

  (2)工程问题:工作总量=工作时间工作效率,工作效率工作时间工作总量;工作总量=各部分工作量的和;

  工作效率利润,售价=标价(1-折扣);进价工作总量;

  工作时间(3)利润问题:利润=售价-进价,利润率=

  (4)商品价格问题:售价=定价折

  售价成本1100%;,利润=售价-成本,利润率成本10(5)利息问题:本息和=本金+利息;利息=本金利率(6)比率问题:部分=全体比率比率部分部分全体;全体比率(7)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

  (8)等积变形问题:长方体的体积=长宽高;圆柱的体积=底面积高;锻造前的体积=锻造后的体积

  (9)周长、面积、体积问题:C圆=2πR,S圆=πR,C长方形=2(a+b),S长方形=ab,C正方形=4a,

  2

  1222322

  S正方形=a,S环形=π(R-r),V长方体=abc,V正方体=a,V圆柱=πRh,V圆锥=πRh.

  310.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  提分数学

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  第四章走进图形世界

  1、几何图形:

  现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。长方体、正方体、球、圆柱、

  圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

  平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。长方形、正方形、三角形、圆

  等都是平面图形。

  立体图形与平面图形:许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

  2、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

  包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线;线和线相交的地方是点;几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形圆柱柱体

  棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、

  生活中的立体图形球体

  (按名称分)圆锥

  椎体

  提分数学

  棱锥

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。棱柱的侧面有可能是长方形,也有可能是平行四边形。

  5、正方体的平面展开图:11种

  6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。7、三视图

  物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。

  平面图形的认识

  线段,射线,直线名称线段射线直线

  -16-

  不同点延伸性不能延伸只能向一方延伸可向两方无限延伸端点数21无联系线段向一方延长就成射线,向两方延长就成直线共同点都是直的线提分数学

  点、直线、射线和线段的表示在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示,如点A

  一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l,或者直线AB

  一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l,线段AB

  点和直线的位置关系有两种:

  ①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。

  线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(3)线段的中点到两端点的距离相等。

  (4)线段的大小关系和它们的长度的大小关系是一致的。(5)线段的比较:1.目测法2.叠合法3.度量法线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。

  M是线段AB的中点

  A

  直线的性质

  MB

  AM=BM=

  1AB(或者AB=2AM=2BM)2(1)直线公理:经过两个点有且只有一条直线。(2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。

  (5)两条不同的直线至多有一个公共点。

  经过两点有一条直线,并且只有一条直线;两点确定一条直线;点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

  提分数学

  直线桑一点和它一旁的部分叫做射线;两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

  角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  角的表示:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  用一副三角板,可以画出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”;度、分、秒是常用的角的度量单位。

  把一个周角360等分,每一份就是一度的角,记作1°;

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒记作“1””;角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。类似的,

  1°=60’,1’=60”

  还有叫的三等分线。

  AOB平分∠AOC∠AOB=∠BOC=

  1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)

  -18-

  C提分数学

  余角和补角

  ①如果两个角的和是一个直角等于90°,这两个角叫做互为余角,简称互余,其中一个角是另一个角的

  余角。用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β互余;反过来,如果∠α与∠β互余,那么∠α+∠β=90°

  ②如果两个角的和是一个平角等于180°,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180°

  ③同角(或等角)的余角相等;同角(或等角)的补角相等。

  对顶角

  ①一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个角叫做互为对顶角,其中一

  个角叫做另一个角的对顶角。

  注意:对顶角是成对出现的,它们有公共的顶点;只有两条直线相交时才能形成对顶角。

  ②对顶角的性质:对顶角相等

  如图,∠1和∠4是对顶角,∠2和∠3是对顶角

  2431

  ∠1=∠4,∠2=∠3

  平行线:

  在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

  注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

  (2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。平行线公理及其推论

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:

  提分数学

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。垂直:

  两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

  垂线的性质:

  性质1:平面内,过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。同一平面内,两条直线的位置关系:相交或平行。

  图形知识结构图:

  提分数学

  从不同方向看立体图形

  立体图形展开立体图形

  几何图形平面图形角的度量角角的大小比较余角和补角角的平分线同角(等角)的余角相等;同角(等角)的补角相等等角的余角相等

  直线、射线、线段

  平面图形平面图形

初一数学知识点总结8

  第一章整式的运算

  一、单项式、单项式的次数:

  只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  二、多项式

  1、多项式、多项式的次数、项

  几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  三、整式:单项式和多项式统称为整式。

  四、整式的加减法:

  整式加减法的一般步骤:(1)去括号;(2)合并同类项。五、幂的运算性质:1、同底数幂的乘法:a

  2、幂的乘方:3、积的乘方:

  4、同底数幂的除法:

  六、零指数幂和负整数指数幂:1、零指数幂:2、负整数指数幂:

  七、整式的乘除法:

  1、单项式乘以单项式:

  法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

  2、单项式乘以多项式:

  法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  3、多项式乘以多项式:

  多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  4、单项式除以单项式:

  单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

  5、多项式除以单项式:

  多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  八、整式乘法公式:

  1、平方差公式:2、完全平方公式:

  第二章平行线与相交线

  一、余角和补角:

  1、余角:

  定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。2、补角:

  定义:如果两个角的和是平角,那么称这两个角互为补角。

  性质:同角或等角的补角相等。

  二、对顶角:

  我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

  对顶角的性质:对顶角相等。

  三、同位角、内错角、同旁内角:

  直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

  四、平行线的判定:

  1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

  2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

  3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

  补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。

  五、平行线的性质:

  (1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。

  六、尺规作图:

  1、作一条线段等于已知线段。2、作一个角等于已知角。

  第三章生活中的数据

  一、科学记数法:

  一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。

  二、近似数和有效数字:

  1、近似数:

  利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

  2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。

  三、形象统计图:

  第四章概率

  一、事件发生的可能性;

  人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

  二、游戏是否公平:

  游戏对双方公平是指双方获胜的可能性相同。三、摸到红球的概率:1、概率的意义

  P(摸到红球=

  摸到红球可能出现的结果数

  摸出一球可能出现的结果数2、确定事件和不确定事件的概率:

  (1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0

  (2)三角形按角分类:

  直角三角形(有一个角为直角的三角形)

  三角形锐角三角形(三个角都是锐角的三角形)斜三角形

  钝角三角形(有一个角为钝角的三角形)

  把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  7、三角形的三种重要线段:(1)三角形的角平分线:

  定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:

  定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的'高线:

  定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

  8、三角形的面积:

  三角形的面积=

  1×底×高2二、全等图形:

  定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形

  1、全等三角形及有关概念:

  能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  2、全等三角形的表示:

  全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:

  (1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

  (2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:

  对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

  第六章变量之间的关系

  1、变量、自变量、因变量:2、函数的三种表示法:

  (1)关系式法(2)列表法

  (3)图像法

  第五章生活中的轴对称

  一、轴对称

  1、轴对称图形:

  如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2、轴对称:

  对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

  3、性质:

  (1)对应点所连的线段被对称轴垂直平分

  (2)对应线段相等,对应角相等。

  二、角平分线的性质:

  角平分线上的点到这个角的两边的距离相等。

  三、线段的垂直平分线(简称中垂线):

  定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。四、等腰三角形

  1、等腰三角形:有两条边相等的三角形叫做等腰三角形。

  2、等腰三角形的性质:

  (1)等腰三角形的两个底角相等

  (2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),

  (3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

  3、等腰三角形的判定:

  (1)有两条边相等的三角形是等腰三角形。

  (2)如果一个三角形有两个角相等,那么它们所对的边也相等五、等边三角形:

  1、等边三角形:三边都相等的三角形叫做等边三角形。2、等边三角形的性质:

  (1)具有等腰三角形的所有性质。

  (2)等边三角形的各个角都相等,并且每个角都等于60°。

  3、等边三角形的判定

  (1)三边都相等的三角形是等边三角形。

  (2):三个角都相等的三角形是等边三角形

  (3):有一个角是60°的等腰三角形是等边三角形。

初一数学知识点总结9

  1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

  5、几何体简称为体(solid).

  6、包围着体的是面(surface),面有平的面和曲的面两种.

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

  8、点动成面,面动成线,线动成体.

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

  13、连接两点间的线段的长度,叫做这两点的距离(distance).

  14、角∠(angle)也是一种基本的几何图形.

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的.角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

  16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等.

初一数学知识点总结10

  相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

  2代数式求值

  (1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

  (2)代数式的'求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

  题型简单总结以下三种:

  ①已知条件不化简,所给代数式化简;

  ②已知条件化简,所给代数式不化简;

  ③已知条件和所给代数式都要化简.

  3由三视图判断几何体

  (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.

  (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

  ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

  ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

  ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

  ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法

初一数学知识点总结11

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:

  含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的'一组未知数的值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

初一数学知识点总结12

  代数初步知识

  1、代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式、注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式、

  2、列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用“”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×112应写成a;

  233(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  a(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a、

  3、几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a-b;a与b差的平方是:(a-b);

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:a,非正数是:-a、2222222

  有理数

  1、有理数:(1)凡能写成

  qp(p,q为整数且p0)形式的数,都是有理数、正整数、0、负整数统称整数;正分数、负分数

  统称分数;整数和分数统称有理数、注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  正有理数

  (2)有理数的分类:

  ①有理数零负有理数正整数正分数负整数负分数整数

  ②有理数分数正整数零负整数正分数负分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  1.a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数、

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线、

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的'相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数、

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

  注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (a0)a(a0)a(2)绝对值可表示为:a0(a0)或a;绝对值的问题经常分类讨论;

初一数学知识点总结13

  有理数:

  (1)凡能写成形式的数,都是有理数,整数和分数统称有理数.

  注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的.特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

初一数学知识点总结14

  一、初一数学上册知识点:代数初步知识。

  1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

  2.列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用“〃”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“〃”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

  二、初一数学上册知识点:几个重要的代数式(m、n表示整数)。

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

  三、初一数学上册知识点:有理数。1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)|a|是重要的非负数,即|a|≥0;注意:|a|〃|b|=|a〃b|,

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

  (4)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

  3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  4.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

  6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.7.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  五、初一数学上册知识点:乘方的定义。(1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)(4)据规律底数的小数点移动一位,平方数的小数点移动二位.2.

  3.近似数的`精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.六、初一数学上册知识点:整式的加减。

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  七、初一数学上册知识点:整式分类为。

  1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

  2.合并同类项法则:系数相加,字母与字母的指数不变.3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

  八、初一数学上册知识点:一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

  2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

  3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

  8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).

  9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

  九、初一数学上册知识点:列一元一次方程解应用题。(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  十、初一数学上册知识点:.列方程解应用题的常用公式。

  十一、结语。

初一数学知识点总结15

  第一章有理数

  1.有理数:

  (1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数,整数和分数统称有理数.p注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数正分数整数零

  (2)有理数的分类:

  ①有理数零

  ②有理数负整数负整数正分数负有理数分数负分数负分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:

  数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.(4)相反数的商为-1.

  (5)相反数的绝对值相等

  4.绝对值:

  (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  a(a0)a(a0)a(2)绝对值可表示为:a0(a0)或;a(a0)a(a0)(3)

  aa1a0;

  aa1a0;

  (4)|a|是重要的非负数,即|a|≥0,非负性;

  5.有理数比大小:

  (1)正数永远比0大,负数永远比0小;

  (2)正数大于一切负数;

  (3)两个负数比较,绝对值大的反而小;

  (4)数轴上的两个数,右边的数总比左边的数大;

  (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  6.倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  等于本身的数汇总:

  相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.

  7.有理数加法法则:X|k|b|1.c|o|m

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘;

  (2)任何数与零相乘都得零;

  (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。11有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.(简便运算)

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的`结果叫做幂;

  (3)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;

  (4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。

  0.120.01211

  (5)据规律2底数的小数点移动一位,平方数的小数点移动二位.10100222a0

  15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a

  16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.

  17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。

  18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。

  第二章整式的加减

  1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

  2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

  5.整式单项式多项式(整式是代数式,但是代数式不一定是整式)。

  6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)

  10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

  第三章一元一次方程

  1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:

  等式性质

  1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质

  2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.

  3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

  5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

  8.一元一次方程解法的一般步骤:化简方程----------分数基本性质

  去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)

  合并同类项--------合并后符号系数化为1---------除前面

  9.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  10.列方程解应用题的常用公式:

  (1)行程问题:路程=速度时间速度路程路程时间;时间速度工作量工作量工时;工时工效

  (2)工程问题:工作量=工作效率工作时间工效工程问题常用等量关系:先做的+后做的=完成量

  (3)顺水逆水问题:

  顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程

  (4)商品利润问题:售价=定价几折售价成本,利润率100%;成本10利润问题常用等量关系:售价-进价=利润

  (5)配套问题:

  (6)分配问题

  第四章图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形平面图形:三角形、四边形、圆、多边形等.

  主视图---------从正面看

  2、几何体的三视图左视图---------从左边看俯视图---------从上面看

  (1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.

  4、点、线、面、体

  (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.

  (二)直线、射线、线段

  1、基本概念名称直线射线线段aaa图形ABBBAA端点个数表示法作法叙述延长无直线a直线AB(BA)作直线a作直线AB;向两端无限延长一个射线a射线AB作射线a作射线AB向一端无限延长两个线段a线段AB(BA)作线段a;作线段AB;连接AB不可延长

  2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的长短比较方法

  (1)度量法

  (2)叠合法

  (3)圆规截取法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=

  6、线段的性质

  1AB,AB=2AM=2BM.

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.

  7、两点的距离

  连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身)

  8、点与直线的位置关系

  (1)点在直线上(或者直线经过点)

  (2)点在直线外(或者直线不经过点).

  (三)角

  1、角:有公共端点的两条射线所组成的图形叫做角.

  2、角的表示法(四种):表示方法图例记法适用范围A任何情况下都适应。表示端O用三个大写字母表示AOB或BOAB点的字母必须写在中间。以这个点为顶点的角只有用一个大写字母表示AA一个。任何情况下都适用。但必须用数字表示11在靠近顶点处加上弧线表示角的范围,并注上数字或用希腊字母表示希腊字母。

  3、角的度量单位及换算(度””、分””、秒””)60进制1=60=3600,1=60;1=(4、角的分类∠β范围锐角直角钝角0<∠β<90°∠β=90°90°

【初一数学知识点总结】相关文章:

数学初一知识点总结07-04

初一数学下册知识点总结11-29

初一数学下知识点总结12-07

初一数学知识点总结07-11

初一数学棱锥知识点总结11-29

(经典)初一数学知识点总结09-09

初一数学知识点的总结11-07

人教版初一数学知识点总结04-24

初一数学知识点总结[精]08-29

(荐)初一数学知识点总结07-12