初三数学知识点

时间:2025-10-11 11:15:24 赛赛 初三 我要投稿

初三数学知识点

  上学期间,说到知识点,大家是不是都习惯性的重视?知识点是指某个模块知识的重点、核心内容、关键部分。相信很多人都在为知识点发愁,下面是小编精心整理的初三数学知识点,欢迎阅读与收藏。

初三数学知识点

  初三数学知识点 1

  1.数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  重点知识:

  初中数学第一课,认识正数与负数!新初一的来~

  2.相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的.,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  3.绝对值

  1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  初三数学知识点 2

  1、反比例函数的概念

  一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

  2、反比例函数的图像

  反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

  3、反比例函数的性质

  反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

  y的取值范围是y0;

  ②当k>0时,函数图像的两个分支分别

  在第一、三象限。在每个象限内,y

  随x 的增大而减小。

  ①x的取值范围是x0,

  y的取值范围是y0;

  ②当k<0时,函数图像的两个分支分别

  在第二、四象限。在每个象限内,y

  随x 的增大而增大。

  4、反比例函数解析式的确定

  确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的'一个点的坐标,即可求出k的值,从而确定其解析式。

  5、反比例函数的几何意义

  设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

  (1)△OPA的面积.

  (2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

  矩形PCEF面积=,平行四边形PDEA面积=

  初三数学知识点 3

  二次函数的解析式有三种形式:

  (1)一般式:

  (2)顶点式:

  (3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

  注意:抛物线位置由决定.

  (1)决定抛物线的开口方向

  ①开口向上.

  ②开口向下.

  (2)决定抛物线与y轴交点的位置.

  ①图象与y轴交点在x轴上方.

  ②图象过原点.

  ③图象与y轴交点在x轴下方.

  (3)决定抛物线对称轴的.位置(对称轴:)

  ①同号对称轴在y轴左侧.

  ②对称轴是y轴.

  ③异号对称轴在y轴右侧.

  (4)顶点坐标.

  (5)决定抛物线与x轴的交点情况.、

  ①△>0抛物线与x轴有两个不同交点.

  ②△=0抛物线与x轴有的公共点(相切).

  ③△<0抛物线与x轴无公共点.

  (6)二次函数是否具有、最小值由a判断.

  ①当a>0时,抛物线有最低点,函数有最小值.

  ②当a<0时,抛物线有点,函数有值.

  (7)的符号的判定:

  表达式,请代值,对应y值定正负;

  对称轴,用处多,三种式子相约;

  轴两侧判,左同右异中为0;

  1的两侧判,左同右异中为0;

  -1两侧判,左异右同中为0.

  (8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

  (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

  (10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;

  ②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

  ③二次函数(经过原点,则。

  (11)二次函数的解析式:

  ①一般式:(,用于已知三点。

  ②顶点式:,用于已知顶点坐标或最值或对称轴。

  (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。

  初三数学知识点 4

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的`对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  =b^2-4ac0时,抛物线与x轴有2个交点。

  =b^2-4ac=0时,抛物线与x轴有1个交点。

  =b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  初三数学知识点 5

  一、锐角三角函数

  正弦等于对边比斜边

  余弦等于邻边比斜边

  正切等于对边比邻边

  余切等于邻边比对边

  正割等于斜边比邻边

  二、三角函数的计算

  幂级数

  c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

  它们的各项都是正整数幂的`幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

  泰勒展开式(幂级数展开法)

  f(x)=f(a)+f(a)/1!-(x-a)+f(a)/2!-(x-a)2+...f(n)(a)/n!-(x-a)n+...

  三、解直角三角形

  1.直角三角形两个锐角互余。

  2.直角三角形的三条高交点在一个顶点上。

  3.勾股定理:两直角边平方和等于斜边平方

  四、利用三角函数测高

  1、解直角三角形的应用

  (1)通过解直角三角形能解决实际问题中的很多有关测量问.

  如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

  (2)解直角三角形的一般过程是:

  ①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

  ②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

  初三数学知识点 6

  一、反比例函数

  1、形如y=k/x(k≠0)或y=kx^—1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^—1表示负一次。

  2、在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

  3、在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。

  4、设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

  二、二次函数

  1、形如y=ax^2+bx+c(a≠0,a、b、c为常数)。的函数叫做二次函数,它的图像是一条抛物线。

  2、二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(—b/2a,4ac—b^2/4a),对称轴是直线x=—b/2a。

  3、对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。图像与y轴的交点的坐标是(0,c)。

  4、一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

  当b^2—4ac>0时,函数图像与x轴有两个交点。

  当b^2—4ac=0时,函数图像与x轴有一个交点。

  当b^2—4ac<0时,函数图像与x轴没有交点。

  5、当a>0,且x=—b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac—b^2/4a;当a<0,且x=—b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac—b^2/4a。

  6、抛物线y=ax^2+c(a≠0)的对称轴是y轴。

  7、对于二次函数y=ax^2+bx+c(a≠0),若a,b同号,对称轴在y轴右侧a,b异号,对称轴在y轴左侧。

  8、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。

  9、对于抛物线y=a(x—m)^2+k,左右平移时,只与m有关,往左是加,往右是减;上下平移时,只与k有关,往上是加,往下是减。

  三、相似三角形

  1、如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

  2、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。

  3、一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的.话,只能取正的,如果是数,正负都可以)

  4、黄金分割:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5—1)/2,取其前三位数字的近似值是0.618。

  5、证明三角形相似的方法:

  (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。照我们老师的方法来说就是A字型和8字型。

  (2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

  (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

  (4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

  (5)对应角相等,对应边成比例的两个三角形叫做相似。

  初三数学知识点 7

  一、求复杂事件的概率:

  1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。

  2.对于作何一个随机事件都有一个固定的概率客观存在。

  3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:

  (1)尽量经历反复实验的`过程,不能想当然的作出判断;(2)做实验时应当在相同条件下进行;(3)实验的次数要足够多,不能太少;(4)把每一次实验的结果准确,实时的做好记录;(5)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;(6)观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值 估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。

  二、判断游戏公平:

  游戏对双方公平是指双方获胜的可能性相同。

  三、概率综合运用:

  概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。

  初三数学知识点 8

  1.轴对称:

  把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

  2.轴对称图形:

  如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

  注意:对称轴是直线而不是线段

  3.轴对称的性质:

  (1)关于某条直线对称的两个图形是全等形;

  (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;

  (3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;

  (4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  4.线段垂直平分线:

  (1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

  (2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;

  ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

  5.角的平分线:

  (1)定义:把一个角分成两个相等的角的射线叫做角的平分线.

  (2)性质:①在角的平分线上的点到这个角的.两边的距离相等.

  ②到一个角的两边距离相等的点,在这个角的平分线上.

  注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.

  6.等腰三角形的性质与判定:

  性质:

  (1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;

  (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;

  (3)等边对等角:等腰三角形的两个底角相等。

  说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;

  ③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

  判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

  7.等边三角形的性质与判定:

  性质:(1)等边三角形的三个角都相等,并且每个角都等于60

  (2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有三线合一。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。

  判定定理:有一个角是60的等腰三角形是等边三角形。

  说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

  初三数学知识点 9

  反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

  它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

  画反比例函数的图象时要注意的.问题:

  (1)画反比例函数图象的方法是描点法;

  (2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。

  k≠0

  (3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。

  反比例函数的性质:

  y=k/x(k≠0)的变形形式为xy=k(常数)所以:

  (1)其图象的位置是:

  当k﹥0时,x、y同号,图象在第一、三象限;

  当k﹤0时,x、y异号,图象在第二、四象限。

  (2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。

  (3)当k﹥0时,在每个象限内,y随x的增大而减小;

  当k﹤0时,在每个象限内,y随x的增大而增大;

  初三数学知识点 10

  一元二次方程

  只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。

  一元二次方程有三个特点:

  (1)含有一个未知数;

  (2)且未知数的最高次数是2;

  (3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程.里面要有等号,且分母里不含未知数。

  补充说明

  1、(但一般二次函数与反比例函数会涉及到一元二次方程的'解法)

  2方程的两根与方程中各数有如下关系: X1+X2= -b/a,X1X2=c/a(也称韦达定理)

  4、方程两根为x1,x2时,方程为:x2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得)

  5、在系数a0的情况下,b2-4ac0时有2个不相等的实数根,b2-4ac=0时有两个相等的实数根,b2-4ac0时无实数根。(在复数范围内有两个复数根。)

  初三数学知识点 11

  二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

  一般的.,自变量x和因变量y之间存在如下关系:

  一般式

  y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;

  顶点式

  y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

  交点式

  y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

  牛顿插值公式(已知三点求函数解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)

  初三数学知识点 12

  1、图形的相似

  相似多边形的对应边的比值相等,对应角相等;

  两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

  相似比:相似多边形对应边的比值。

  2、相似三角形

  判定:

  平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

  如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

  如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

  如果一个三角形的'两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

  3相似三角形的周长和面积

  相似三角形(多边形)的周长的比等于相似比;

  相似三角形(多边形)的面积的比等于相似比的平方。

  4位似

  位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

  初三数学知识点 13

  知识点1。概念

  把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

  解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到。

  (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同。

  (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关。

  知识点2。比例线段

  对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段。

  知识点3。相似多边形的性质

  相似多边形的性质:相似多边形的对应角相等,对应边的比相等。

  解读:(1)正确理解相似多边形的定义,明确“对应”关系。

  (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性。

  知识点4。相似三角形的概念

  对应角相等,对应边之比相等的三角形叫做相似三角形。

  解读:(1)相似三角形是相似多边形中的一种;

  (2)应结合相似多边形的性质来理解相似三角形;

  (3)相似三角形应满足形状一样,但大小可以不同;

  (4)相似用“∽”表示,读作“相似于”;

  (5)相似三角形的对应边之比叫做相似比。

  知识点5。相似三角的判定方法

  (1)定义:对应角相等,对应边成比例的两个三角形相似;

  (2)平行于三角形一边的直线截其他两边(或其他两边的.延长线)所构成的三角形与原三角形相似。

  (3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。

  (4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

  (5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似。

  (6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似。

  知识点6。相似三角形的性质

  (1)对应角相等,对应边的比相等;

  (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

  (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方。

  (4)射影定理

  初三数学知识点 14

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

  这两个图形中的对应点叫做关于中心的.对称点.

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

  (2)关于中心对称的两个图形是全等图形.

  5、中心对称图形:

  把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,

  即点P(x,y)关于原点O的对称点P(-x,-y)。

  初三数学知识点 15

  锐角三角函数公式

  sin α=∠α的对边 / 斜边

  cos α=∠α的邻边 / 斜边

  tan α=∠α的对边 / ∠α的邻边

  cot α=∠α的`邻边 / ∠α的对边

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina(1)特殊角三角函数值

  sin0=0

  sin30=0.5

  sin45=0.7071 二分之根号2

  sin60=0.8660 二分之根号3

  sin90=1

  cos0=1

  cos30=0.866025404 二分之根号3

  cos45=0.707106781 二分之根号2

  cos60=0.5

  cos90=0

  tan0=0

  tan30=0.577350269 三分之根号3

  tan45=1

  tan60=1.732050808 根号3

  tan90=无

  cot0=无

  cot30=1.732050808 根号3

  cot45=1

  cot60=0.577350269 三分之根号3

  cot90=0

  初三数学知识点 16

  一、圆的定义。

  1、以定点为圆心,定长为半径的点组成的图形。

  2、在同一平面内,到一个定点的距离都相等的点组成的图形。

  二、圆的各元素。

  1、半径:圆上一点与圆心的连线段。

  2、直径:连接圆上两点有经过圆心的线段。

  3、弦:连接圆上两点线段(直径也是弦)。

  4、弧:圆上两点之间的曲线部分。半圆周也是弧。

  (1)劣弧:小于半圆周的弧。

  (2)优弧:大于半圆周的弧。

  5、圆心角:以圆心为顶点,半径为角的边。

  6、圆周角:顶点在圆周上,圆周角的两边是弦。

  7、弦心距:圆心到弦的垂线段的长。

  三、圆的基本性质。

  1、圆的对称性。

  (1)圆是轴对称图形,它的对称轴是直径所在的直线。

  (2)圆是中心对称图形,它的对称中心是圆心。

  (3)圆是旋转对称图形。

  2、垂径定理。

  (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

  (2)推论:

  平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

  平分弧的直径,垂直平分弧所对的弦。

  3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

  (1)同弧所对的圆周角相等。

  (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

  4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

  5、夹在平行线间的两条弧相等。

  6、设⊙O的半径为r,OP=d。

  7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

  (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

  (直角三角形的外心就是斜边的中点。)

  8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

  直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

  直线与圆没有交点,直线与圆相离。

  9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。

  则AB=(x1+x2,y1+y2)

  10、圆的切线判定。

  (1)d=r时,直线是圆的切线。

  切点不明确:画垂直,证半径。

  (2)经过半径的外端且与半径垂直的直线是圆的切线。

  切点明确:连半径,证垂直。

  11、圆的切线的性质(补充)。

  (1)经过切点的直径一定垂直于切线。

  (2)经过切点并且垂直于这条切线的直线一定经过圆心。

  12、切线长定理。

  (1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。

  (2)切线长定理。

  ∵PA、PB切⊙O于点A、B

  ∴PA=PB,∠1=∠2。

  13、内切圆及有关计算。

  (1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

  (2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。

  求:AD、BE、CF的长。

  分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.

  可得方程:5-x+7-x=6,解得x=3

  (3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

  求内切圆的半径r。

  分析:先证得正方形ODCE,得CD=CE=r

  AD=AF=b-r,BE=BF=a-r

  b-r+a-r=c

  得r=(b+a-c)/2

  (4)S△ABC=abc/4r

  14、(补充)

  (1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

  如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

  (2)相交弦定理。

  圆的.两条弦AB与CD相交于点P,则PAPB=PCPD。

  (3)切割线定理。

  如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PBPC。

  (4)推论:如图,PAB、PCD是⊙O的割线,则PAPB=PCPD。

  15、圆与圆的位置关系。

  (1)外离:d>r1+r2,交点有0个;

  外切:d=r1+r2,交点有1个;

  相交:r1-r2

  内切:d=r1-r2,交点有1个;

  内含:0≤d

  (2)性质。

  相交两圆的连心线垂直平分公共弦。

  相切两圆的连心线必经过切点。

  16、圆中有关量的计算。

  (1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

  L=n(圆心角)xπ(圆周率)xr(半径)/180

  (2)扇形的面积用S表示。

  S=lr/2

  (3)圆锥的侧面展开图是扇形。

  r为底面圆的半径,a为母线长。

  扇形的圆心角α=l/r

  S侧=arS全=ar+r2

  中考数学圆知识点总结

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理;垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1;①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2;圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理;在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦;相等,所对的弦的弦心距相等

  10.推论;在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两;弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11定理;圆的内接四边形的对角互补,并且任何一个外角都等于它;的内对角

  12.①直线L和⊙O相交;d

  ②直线L和⊙O相切;d=r

  ③直线L和⊙O相离;dr

  13.切线的判定定理;经过半径的外端并且垂直于这条半径的直线是圆的切线

  14.切线的性质定理;圆的切线垂直于经过切点的半径

  15.推论1;经过圆心且垂直于切线的直线必经过切点

  16.推论2;经过切点且垂直于切线的直线必经过圆心

  17.切线长定理;从圆外一点引圆的两条切线,它们的切线长相等,;圆心和这一点的连线平分两条切线的夹角

  18.圆的外切四边形的两组对边的和相等;外角等于内对角

  19.如果两个圆相切,那么切点一定在连心线上

  20.①两圆外离;dR+r;②两圆外切;d=R+r

  ③.两圆相交;R-rr)

  ④.两圆内切;d=R-r(Rr);⑤两圆内含dr)

  21.定理;相交两圆的连心线垂直平分两圆的公共弦

  22.定理;把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23.定理;任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24.正n边形的每个内角都等于(n-2)×180°/n

  25.定理;正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26.正n边形的面积Sn=pnrn/2;p表示正n边形的周长

  27.正三角形面积√3a/4;a表示边长

  28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为;360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29.弧长计算公式:L=n兀R/180

  30.扇形面积公式:S扇形=n兀R^2/360=LR/2

  31.内公切线长=;d-(R-r);外公切线长=;d-(R+r)

  32.定理;一条弧所对的圆周角等于它所对的圆心角的一半

  33.推论1;同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34.推论2;半圆(或直径)所对的圆周角是直角;90°的圆周角所;对的弦是直径

【初三数学知识点】相关文章:

初三数学的知识点归纳02-08

初三数学知识点05-16

初三数学知识点12-21

初三数学知识点总结07-10

初三数学圆知识点总结10-25

初三数学旋转知识点归纳06-18

初三数学圆的知识点总结10-24

初三数学知识点的整理06-20

初三数学知识点总结06-18

初三数学统计与概率知识点06-18