初三数学知识点归纳总结

时间:2024-11-13 12:04:25 林强 初三 我要投稿
  • 相关推荐

初三数学知识点归纳总结

  在日复一日的学习中,很多人都经常追着老师们要知识点吧,知识点就是学习的重点。还在苦恼没有知识点总结吗?以下是小编为大家收集的初三数学知识点归纳总结,欢迎阅读与收藏。

初三数学知识点归纳总结

  第一章实数

  重点 实数的有关概念及性质,实数的运算

  ☆内容提要☆

  一、 重要概念

  1.数的分类及概念

  数系表:

  说明:分类的原则:1)相称(不重、不漏)

  2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3.倒数: ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

  4.相反数: ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:①定义(三要素)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

  二、 实数的运算

  1. 运算法则(加、减、乘、除、乘方、开方)

  2. 运算定律(五个加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从左

  到右(如5 C.(有括号时)由小到中到大。

  三、 应用举例

  附:典型例题

  1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

  =b-a.

  2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。

  第二章 代数式

  重点代数式的有关概念及性质,代数式的运算

  ☆内容提要☆

  一、 重要概念

  分类:

  1.代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

  的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2.整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3.单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x, =│x│等。

  4.系数与指数

  区别与联系:①从位置上看;②从表示的意义上看

  5.同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6.根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。

  7.算术平方根

  ⑴正数a的正的平方根( [a与平方根的区别]);

  ⑵算术平方根与绝对值

  ① 联系:都是非负数, =│a│

  ②区别:│a│中,a为一切实数; 中,a为非负数。

  8.同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  9.指数

  ⑴ ( 幂,乘方运算)

  ① a0时, ②a0时, 0(n是偶数), 0(n是奇数)

  ⑵零指数: =1(a0)

  负整指数: =1/ (a0,p是正整数)

  二、 运算定律、性质、法则

  1.分式的加、减、乘、除、乘方、开方法则

  2.分式的性质

  ⑴基本性质: = (m0)

  ⑵符号法则:

  ⑶繁分式:①定义;②化简方法(两种)

  3.整式运算法则(去括号、添括号法则)

  4.幂的运算性质:① ② ③ = ;④ = ;⑤

  技巧:

  5.乘法法则:⑴单⑵单⑶多多。

  6.乘法公式:(正、逆用)

  (a+b)(a-b)=

  (ab) =

  7.除法法则:⑴单⑵多单。

  8.因式分解:

  ⑴定义;

  ⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

  9.算术根的性质: =__ ; __; (a0); (a0)(正用、逆用)

  10.根式运算法则:

  ⑴加法法则(合并同类二次根式);

  ⑵乘、除法法则;

  ⑶分母有理化:A. ;B. ;C. .

  11.科学记数法: (110,n是整数)

  圆的认识

  1、圆的定义

  (1)在一个平面内,线段OA绕它的一个端点O旋转一周, 另一个端点A随之旋转所形成的图形叫做圆。固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

  (2)圆可以看作是平面内到定点的距离等于定长的点的集 合,定点为圆心,定长为圆的半径。

  说明:圆的位置由圆心确定,圆的大小由半径确定,半 径相等的两个圆为等圆。

  2、圆的有关概念

  (1)弦:连结圆上任意两点的线段。(如右图中 的CD)。

  (2)直径:经过圆心的弦(如右图中的AB)。 直径等于半径的2倍。

  (3)弧:圆上任意两点间的部分叫做圆弧。(如 右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

  (4)圆心角:如右图中∠COD就是圆心角。

  3、圆心角、弧、弦、弦心距之间的关系。

  (1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

  (2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

  4、过三点的圆。

  (1)定理:不在同一条直线上的三点确定一个圆。

  (2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

  5、垂径定理。

  垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:

  (1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

  ③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对 的另一条弧。

  (2)圆的两条平行弦所夹的弧相等。

  6、与圆相关的角

  (1)与圆相关的角的定义

  ①圆心角:顶点在圆心的角叫做圆心角。

  ②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

  ③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

  (2)与圆相关的角的性质

  ①圆心角的度数等于它所对的弦的度数;

  ②一条弧所对的圆周角等于它所对的圆心角的一半;

  ③同弧或等弧所对的圆周角相等;

  ④半圆(或直径)所对的圆周角相等;

  ⑤弦切角等于它所夹的弧所对的圆周角;

  ⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;

  ⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  与圆有关的位置关系

  1、点与圆的位置关系

  如果圆的半径为r,某一点到圆心的距离为d,那么:

  (1)点在圆外dr。

  (2)点在圆上dr。

  (3)点在圆内dr。

  2、直线和圆的位置关系

  设r为圆的半径,d为圆心到直线的距离:

  (1)直线和圆相离dr,直线与圆没有交点;

  (2)直线和圆相切dr,直线与圆有唯一交点;

  (3)直线和圆相交dr,直线与圆有两个交点。

  3、圆的切线

  (1)定义:和圆有唯一公共点的直线叫做圆的切线,唯一公共点叫做切点。

  (2)切线的判定定理,经过半径的外端且垂于这条半径的直线是圆的切线。

  (3)切线的性质定理及推论。

  定理:圆的切线垂直于经过切点的半径。 推论:

  ①经过圆心且垂直于切线的直线必经过切点;

  ②经过切点且垂直于切线的直线必经过圆心。

  4、两圆的位置关系

  设R、r为两圆的半径,d为圆心距

  (1)两圆外离dR+r;

  (2)两圆外切dR+r;

  (3)两圆相交R。

  (4)两圆内切d。

  (5)两圆内含dr

  (注意:如果为d=0,则两圆为同心圆。) R-r(R>r)。

  5、两圆连心线的性质

  (1)相交两圆的连心线,垂直平分公共弦,且平分两条外公切线所夹的角。(注:平分两外公切线所夹的角,通过角平分线的判定“到角的两边距离相等的点,在这个角的平分线上”,很易证明。)

  (2)相切两圆的连心线必经过切点。

  (3)相离两圆的连心线平分内公切线的夹角和外公切线的夹角。

  6、两圆公切线的性质

  (1)如果两圆有两条外公切线,则两外公切线长相等。

  (2)如果两圆有两条内公切线,则两内公切线长相等。

  7、与圆有关的比例线段问题的一般思考方法

  (1)直接应用相交弦、切割线定理及其推论;

  (2)找相似三角形,当证明有关线段的比例式或等积式不能直接运用基本定理推导时,通常是由“三点定形法”证三角形相似,其一般思路为等积式→比例式→中间比→相似三角形。

  8、与圆相关的常用辅助线

  (1)有弦,可作弦心距;

  (2)有直径,可作直径所对的圆周角;

  (3)有切点,可作过切点的半径;

  (4)两圆相交,可作公共弦;

  (5)两圆相切,可作公切线;

  (6)有半圆,可作整圆。

  记忆口诀:有弦可作弦心距,中心圆心相连;两圆相切公切线,两圆相交公共弦;遇到切点作半径,圆与圆心连心;遇到直径相直角,直角相对点共圆。(注:“心连心”为连心线。)

  9、圆外切三角形和四边形的性质

  (1)如右图,△ABC是⊙O的外切三角形,D、E、F为切点,则AD=AF=AB+AC-BD。

  同理:直角三角形内切圆半径R=a+b-c。(其中a、b为直角边,c为斜边)

  (2)圆外切四边形两组对边和相等,即如右图,四边形ABCD是⊙O的外切四边形,则 AB+CD=AD+BC。

  圆中的计算问题

  1、圆的有关计算

  (1)圆周长:c=2pR。

  (2)弧长:l=npR; 1802。

  (3)圆面积:S=pR;1npR2。

  (4)扇形面积:S扇形=lR=;2360。

  (5)弓形面积:S弓形=S扇形±SD。

  2、圆柱

  圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的底面周长c,宽是圆柱的母线长l,如果圆柱的底面半径是r,则S圆柱侧=cl=2prl。

  3、圆锥

  圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面周长c,半径等于圆锥母线长l,若圆锥的底面半径为r,这个扇形的圆心角为a,则a=r1360,S圆锥侧=cl=prl。

【初三数学知识点归纳总结】相关文章:

初三数学的知识点归纳09-25

初三数学知识点归纳07-28

初三数学旋转知识点归纳06-18

初三数学公式知识点归纳总结01-01

初三数学《随机事件》知识点归纳08-20

初三物理知识点归纳总结07-29

初三语文知识点总结归纳06-18

初三英语知识点归纳07-19

初三语文的知识点归纳09-28