初二上册数学勾股定理及其逆定理知识点总结

时间:2024-09-19 11:41:49 维泽 初二 我要投稿
  • 相关推荐

初二上册数学勾股定理及其逆定理知识点总结

  在日复一日的学习中,看到知识点,都是先收藏再说吧!知识点就是学习的重点。相信很多人都在为知识点发愁,下面是小编整理的初二上册数学勾股定理及其逆定理知识点总结,希望能够帮助到大家。

初二上册数学勾股定理及其逆定理知识点总结

  一、勾股定理:

  1.勾股定理内容:

  如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

  2.勾股定理的证明:

  勾股定理的证明方法很多,常见的是拼图的方法

  用拼图的方法验证勾股定理的思路是:

  (1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;

  (2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

  3.勾股定理的适用范围:

  勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

  二、勾股定理的逆定理

  1.逆定理的内容:

  如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

  说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

  2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定最大边;

  (2)算出最大边的平方与另两边的平方和;

  (3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

  三、勾股数

  能够构成直角三角形的三边长的三个正整数称为勾股数.

  四、一个重要结论:

  由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

  五、勾股定理及其逆定理的应用

  解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

  勾股定理应用举例:

  1、已知直角三角形的任意两边求第三边。

  2、已知直角三角形的任意一边确定另两边的关系。

  3、证明包含平方(算术平方根)关系的几何问题。

  4、构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题。

  平面展开——最短路径问题求解方法:

  解决此类问题时,要先确定好该路径的起点终点,以及立方体的平面展开图,借助勾股定理来求得路径的长度。由于展开的方法可以多种,因此对于路径的求解也是有多种方法,在这里必定有一个最小值,此值为最短路径。

  1、勾股数的定义:

  能够成为直角三角形三条边长的三个正整数,成为勾股数。

  2、常见的勾股数有哪些:

  (1)3,4,5

  (2)6,8,10

  (3)8,15,17

  (4)7,24,25

  (5)5,12,13

  (6)9,12,15。

  3、勾股数组的规律:

  (1)如果a为一个大于1的奇数,b、c是两个连续自然数,且,则a,b,c为一组勾股数;

  (2)如果a,b,c为一组勾股数,那么na,nb,nc也是一组勾股数,其中n(n≥1)为自然数;

【初二上册数学勾股定理及其逆定理知识点总结】相关文章:

初二数学教案勾股定理的逆定理的内容10-05

初二数学勾股定理知识点02-06

苏科版初二上册数学勾股定理的知识点06-09

初二数学勾股定理知识点9篇02-07

《勾股定理的逆定理》数学教学反思(通用10篇)02-28

初二物理上册《透镜及其应用》的知识点12-04

初二上册数学知识点总结11-11

初二上册数学知识点总结07-12

初二数学上册知识点汇总07-31

人教版初二数学上册知识点12-17