高中数学说课稿

时间:2025-01-26 14:05:43 说课稿 我要投稿

高中数学说课稿

  作为一名教师,常常要写一份优秀的说课稿,借助说课稿可以有效提升自己的教学能力。说课稿应该怎么写呢?以下是小编整理的高中数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学说课稿

高中数学说课稿1

  各位评委、各位老师:大家好!

  我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。

  一。教材内容分析:

  1.本节课内容在整个教材中的地位和作用。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

  2.教学目标定位。

  根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

  3.教学重点、难点确定。

  本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。

  二。教法学法分析:

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

  三。教学过程分析:

  1.创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

  2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

  3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的'另外一种解法(可称为"三步曲"法)。

  4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

  5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

  四。课堂意外预案:

  新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案".

  1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

  2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

高中数学说课稿2

  一、地位作用

  数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

  基于此,设计本节的数学思路上:

  利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的.教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

  二、教学目标

  知识目标:1)理解等比数列的概念

  2)掌握等比数列的通项公式

  3)并能用公式解决一些实际问题

  能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

  三、教学重点

  1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点

  2)等比数列的通项公式的推导及应用

  四、教学难点

  “等比”的理解及利用通项公式解决一些问题。

  五、教学过程设计

  (一)预习自学环节。(8分钟)

  首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

  回答下列问题

  1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

  2)观察以下几个数列,回答下面问题:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

  ①有哪几个是等比数列?若是公比是什么?

  ②公比q为什么不能等于零?首项能为零吗?

  ③公比q=1时是什么数列?

  ④q>0时数列递增吗?q<0时递减吗?

  3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?

  4)等比数列通项公式与函数关系怎样?

  (二)归纳主导与总结环节(15分钟)

  这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

  通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”;

  ②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

  ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。

  通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

  法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

  法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

高中数学说课稿3

  教学目标:

  (1)至少掌握点到直线的距离公式的一种推导方法,能用公式来求点到直线距离。

  (2)培养学生探究能力和由特殊到一般的研究问题的能力。

  (3)认识事物(知识)之间相互联系、互相转化的辩证法思想,培养学生转化的思想和综合应用知识分析问题解决问题的能力。

  (4)培养学生团队合作精神,培养学生个性品质,培养学生勇于探究的科学精神。

  教学重点:点到直线的距离公式推导及公式的应用

  教学难点:点到直线的距离公式的推导

  教学方法:启发引导法、讨论法

  学习方法:任务驱动下的研究性学习

  教学时间:45分钟

  教学过程:

  1、教师提出问题,引发认知冲突(约5分钟)

  问题:假定在直角坐标系上,已知一个定点P(x0,y0)和一条定直线l:AxByC=0,那么如何求点P到直线l的距离d?请学生思考并回答。

  学生1:先过点P作直线l的垂线,垂足为Q,则|PQ|就是点P到直线l的距离d;然后用点斜式写出垂线方程,并与原直线方程联立方程组,此方程组的解就是点Q的坐标;最后利用两点间距离公式求出|PQ|。

  接着,教师用投影出示下列5道题(尝试性题组),请5位学生上黑板练习(第(4)题请一位运算能力强的同学,其余学生在下面自己练习,每做完一题立即讲评):

  (1)求P(1,2)到直线l:x=3的距离d;(答案:d=2)

  (2)求P(x0,y0)到直线l:ByC=0(B≠0)的距离d;(答案:)

  (3)求P(x0,y0)到直线l:AxC=0(A≠0)的距离d;(答案:)

  (4)求P(6,7)到直线l:3x—4y5=0的距离d;(答案:d=1)

  (5)求P(x0,y0)到直线l:AxByC=0(AB≠0)的距离d。

  第(1)容易、(2)和(3)题虽然含有字母参数,但由于直线的位置比较特殊,学生不难得出正确结论;第(4)题虽然运算量较大,但按照刚才学生1回答的方法与步骤,也能顺利解出正确答案;第(5)题虽然思路清晰,但由于字母参数过多、运算量太大行不通。学生们陷入了困境。

  2、教师启发引导,学生走出困境(约8分钟)

  教师:根据以上5位学生的运算结果,你能得到什么启示?

  学生2:当直线的位置比较特殊(水平或竖直)时,点到直线的距离容易求得,而当直线是倾斜位置时则较难;含有多个字母时虽然想起来思路很自然,但具体操作起来因计算量很大而无法得出结果。

  教师:那么,练习(5)有没有运算量小一点的推导方法呢?我们能不能根据刚才的第(2)、(3)的启示,借助水平、竖直情形和平面几何知识来解决倾斜即一般情况呢?请同学们思考。

  学生3:能!如图1,过点P作x、y轴的垂线分别交直线l于S、R,则由三角形面积公式可得

  |PQ|=(|PR|·|PS|)/|RS|

  教师:|PR|怎么求?|PS|又怎么求?

  学生3:设R(x1,y0),则由Ax1By0C=0,

  得x1=—(By0C)/A,

  ∴|PR|=|x0—x1|=|Ax0By0C|/|A|;

  同理:|PS|=|Ax0By0C|/|B|。

  教师:|RS|怎么求?

  学生3:|RS|==(/|AB|)·|Ax0By0C|。

  教师:|PQ|结果是什么?

  学生3:|PQ|=。

  教师:公式的这种推导方法是否需要作补充说明?

  学生4:当A=0或B=0时,ΔPRS不存在,故应说明公式当A=0或B=0时是否适用?

  由(2)、(3)检验可知公式依然成立,即公式对任意直线都适用。

  3、教师提出问题,学生分组讨论(约10分钟)

  教师:推导点到直线的距离公式的方法不少。前面我们学了函数、三角函数、向量、不等式等数学知识,你能用所学过的.知识从不同角度、采用不同方法来推导这个公式吗?请同学们先独立思考,然后在小组上进行讨论交流,由组长负责记录。10分钟后每组推选一名代表对本组找到的最好的一种推导方法通过实物投影进行"成果"交流。

  学生们积极探讨;教师来回巡视,回答各研究小组的询问......

  4、学生交流"成果",教师点评小结(约16分钟)

  经过约十分钟的研讨,各小组都找到了新的推导方法。于是教师请4名代表依次上讲台(让准备成熟的先讲),借助实物投影介绍本组的"成果"。由于时间关系,每组只要求讲一种方法,用时不超过4分钟,且各组的方法不能重复。

  学生5:我们用的是"设而不求,整体代换"的数学思想。请看投影屏幕:

  设Q的坐标为(x1,y1),则直线PQ的斜率k1=,又直线l的斜率k=—,于是由PQ⊥l得,k1k=—1即B(x1—x0)—A(y1—y0)=0①

  又因为Ax1By1C=0,即Ax1By1=—C

  两边同减Ax0By0得A(x1—x0)B(y1—y0)=—(Ax0By0C)②

  于是①2②2得,(A2B2)[(x1—x0)2(y1—y0)2]=(Ax0By0C)2,

  即(A2B2)d2=(Ax0By0C)2

  所以d=。

  教师:"设而不求,整体代换",真是奥妙无穷,这是解析几何减少运算量的有效途径,同时也体现了数学的内在美,妙不可言。

  学生6:我们小组向大家介绍一种独特的方法——向量法,请看投影屏幕:

  如图2,设T(x1,y1)为直线l上的任意一点,则Ax1By1C=0,=(x1—x0,y1—y0)

  ∵PQ⊥直线l,

  ∴平行于直线l的法向量=(A,B)

  另设与的夹角为θ,则·=cosθ

  即|A(x1—x0)B(y1—y0)|=|||cosθ|

  即|Ax0By0C|=·d

  ∴d=。

  教师:向量是数量与图形的有机结合,解析几何是用代数的方法解决几何问题,两者都体现了数形结合的思想,第三小组的推导方法证明了这一点,也再次说明了向量具有很强的实用性与工具性,用向量法解解析几何题确实行之有效。

  学生7::我们小组向大家介绍向量的另一种方法,妙用向量数量积的性质.请看投影屏幕:

  如图3,设垂足是点H(m,n),

  直线l的法向量共线,

  这是相当简单的方法了。

  教师:巧妙利用向量数量积的性质来求距离,简直是"巧夺天工",与其他方法相比,这种方法有绝对优势,我们必须重视对向量工具性的研究和应用。

  学生8:刚才三个小组的证明方法确实精彩,我们也发现了一种巧妙的方法,把它称为"柯西不等式法",请看投影屏幕:

  我们知道,P点到直线l的距离,实质上是点P与直线l上任意一点T的距离的最小值,于是我们设T(x1,y1)为直线l上的任一点(如图2),则Ax1By1C=0,

  而d=|PT|min,于是|PT|=

  =×,

  利用柯西不等式,便有|PT|≥=,

  所以d=,此时,即PT垂直于直线l。

  教师:这一证法果然十分巧妙,包含的数学思想十分丰富。由点到直线的距想到最小值,又由最小值想到不等式,在一步步"转化"中问题得到圆满解决。同时也体现了不等式的工具作用。

  5、公式应用(学生练习,约3分钟)

  (1)求P(6,7)到直线l:3x—4y5=0的距离d。

  (直接代公式得答案:d=1,检验尝试性题组第(4)的答案)

  (2)求P(—1,1)到直线l:的距离d。

  (先化直线方程为一般式再代公式得答案:)

  6、教师小结并布置作业(约1分钟)

  这节课我们学习了点到直线的距离公式,在公式的推导中学到了许多重要的数学思想和方法,感受到了数学的奥妙,也感受到了成功的喜悦。其实这个公式的推导方法不下十种,由于课堂上时间紧,许多同学有创造性的推导方法不能进行展示、交流,请同学们撰写一篇题为《点到直线距离公式的多种推导方法》的数学小论文,作为本节课的作业,允许三到四人合作完成。

  设计说明:

  数学公式的教学应包含两个部分:公式的推导和公式的运用。由于受应试教育的影响,前者往往被"轻描淡写",而后者却搞得"轰轰烈烈",这显然与"重结论,但更重过程"的现代教育理念相违背。其实数学公式的推导都蕴含着丰富的数学思想和数学方法,谁忽视了这个"产生过程",谁就忽视了数学的"精髓",谁就忽视了学生探究性思维品质的培养。

  这节课把研究性学习引入公式的教学,让学生真正成为课堂的主人。在推导公式的过程中,学生通过克服困难的经历,以及获得成功的体验,锻炼了意志,增强了信心。其实所有公式的教学、定理的教学都应向这个方向努力。

  数学教学,从根本上讲就是提高学生的数学素质,提高学生的数学素质的有效途径有二:其一,使学生善于总结,使零乱的知识系统化、综合化;其二,使学生善于联想,培养发散性思维。本节课使学会从不同的角度思考问题,加强知识间的联系,正是锻练、提高学生运用知识分析问题和解决问题的能力,从而提高数学素质。

  通过公式求点到直线的距离并不困难,但这个公式的推导方法不下十种,且各种推导都蕴含着重要的数学思想、方法,由于课堂上时间紧,许多同学的有创造性的推导方法不能进行展示、交流,故课外请同学们撰写一篇题为《点到直线距离公式的多种推导方法》的数学小论文作为本节课的作业。考虑到同学的个体差异,故允许三到四人合作完成。同时通过学生小论文的完成情况对这节课的教学效果作出评价。

  本课设计有一定的弹性,实际教学中,学生想到的推导方法不一定是上述几种,我将针对每一种方法的特点进行适当的点评。进行交流的学生不一定是四人,若时间不够,公式应用留到下节课,本节课只完成公式推导。

高中数学说课稿4

  一、教学目标

  (1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推

  导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

  (2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探

  索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

  (3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

  二、教学重点、难点

  (1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

  (2)教学难点:椭圆标准方程的建立和推导。

  三、教学过程

  (一)创设情境,引入概念

  1、动画演示,描绘出椭圆轨迹图形。

  2、实验演示。

  思考:椭圆是满足什么条件的点的轨迹呢?

  (二)实验探究,形成概念

  1、动手实验:学生分组动手画出椭圆。

  实验探究:

  保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

  思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

  2、概括椭圆定义

  引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

  教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

  思考:焦点为的椭圆上任一点M,有什么性质?

  令椭圆上任一点M,则有

  (三)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

  2、研讨探究

  问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有

  ,尝试推导椭圆的方程。

  思考:如何建立坐标系,使求出的方程更为简单?

  将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

  方案一方案二

  按方案一建立坐标系,师生研讨探究得到椭圆标准方程

  =1(),其中b2=a2-c2(b>0);

  选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。

  教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

  (四)归纳概括,方程特征

  1、观察椭圆图形及其标准方程,师生共同总结归纳

  (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

  (2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

  (3)椭圆标准方程中三个参数a,b,c关系:;

  (4)椭圆焦点的位置由标准方程中分母的大小确定;

  (5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

  2、在归纳总结的基础上,填下表

  标准方程

  图形a,b,c关系焦点坐标焦点位置

  在x轴上

  在y轴上

  (五)例题研讨,变式精析

  例1、求适合下列条件的椭圆的标准方程

  (1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。

  (2)两焦点坐标分别是,并且椭圆经过点。

  例2、(1)若椭圆标准方程为及焦点坐标。

  (2)若椭圆经过两点求椭圆标准方程。

  (3)若椭圆的一个焦点是,则k的值为。

  (A)(B)8(C)(D)32

  例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。

  (六)变式训练,探索创新

  1、写出适合下列条件的椭圆标准方程

  (1),焦点在x轴上;

  (2)焦点在x轴上,焦距等于4,并且经过点P;

  2、若方程表示焦点在y轴上的椭圆,则k的范围。

  3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。

  4、已知椭圆的焦距相等,求实数m的值。

  5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

  6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。

  (七)小结归纳,提高认识

  师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

  (八)作业训练,巩固提高

  课本第96页习题§8。1第3题、第5题、第6题。

  课后思考题:

  1、知是椭圆的两个焦点,AB是过的弦,则周长是。

  (A)2a(B)4a(C)8a(D)2a2b

  2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜

  率之积等于,求顶点C的轨迹方程。

  2、与圆外切,同时与圆内切,求动圆圆心的'轨迹方程,并说明它是什么样的曲线?

  教学设计说明

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

  设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

高中数学说课稿5

  开始:各位专家领导, 好!

  今天我将要为大家讲的课题是

  首先,我对本节教材进行一些分析

  一、教材结构与内容简析

  本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了

  ,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

  二、 教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  1 基础知识目标:

  2 能力训练目标:

  3 创新素质目标:

  4 个性品质目标:

  三、 教学重点、难点、关键

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  重点: 通过 突出重点

  难点: 通过 突破难点

  关键:

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  四、 教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生

  “知其然”而且要使学生“知其所以然”,

  我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:

  ,应着重采用 的教学方法。即:

  五、 学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的'人”,因而在教学中要特别重视学法的指导。

  1、理论:

  2、实践:

  3、能力:

  最后我来具体谈一谈这一堂课的教学过程:

  六、 教学程序及设想

  1、由 引入:

  把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

  在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  对于本题:

  2、由实例得出本课新的知识点是:

  3、讲解例题。

  我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

  4、能力训练。

  课后练习

  使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  5、总结结论,强化认识。

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  6、变式延伸,进行重构。

  重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

  7、板书。

  8、布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

  结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

  注意时间掌握

  六、注意灵活导入新知识点。

  电脑课件

  使用投影

  根据时间进行增删

高中数学说课稿6

  一、背景分析

  1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

  教学重点:充分条件、必要条件和充要条件三个概念的定义。

  2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

  教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。

  教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。

  二、教学目标设计:

  (一)知识目标:

  1、正确理解充分条件、必要条件、充要条件三个概念。

  2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

  (二)能力目标:

  1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

  2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

  (三)情感目标:

  1、通过以学生为主体的`教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

  2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。

  3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。

  三、教学结构设计:

  数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。

  整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈

  整个教学设计的主要特色:

  (1)由生活事例引出课题;

  (2)采用开放式教学模式;

  (3)扩展例题是分析生活中的名言名句,又将数学融入生活中。

  努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。

  四、教学媒体设计:

  本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。

  五、教学过程设计:

  第一,创设情境,激发兴趣,引出课题:

  考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。

  我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。

  第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。

  用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。

  第二,引导学生分析实例,给出定义。

  在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。

  得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。

  还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。

  当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。

高中数学说课稿7

  【一】教学背景分析

  1.教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

  2.学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题.

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识.

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣.

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4. 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用.

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题.

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  好学教育:

  【二】教法学法分析

  1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.

  2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程. 下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图.

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.

  (二)深入探究——获得新知

  问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2.如果圆心在,半径为时又如何呢?

  好学教育:

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.

  (三)应用举例——巩固提高

  I.直接应用 内化新知

  问题三 1.写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点.

  2.写出圆的圆心坐标和半径.

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的`切线问题作准备.

  II.灵活应用 提升能力

  问题四 1.求以点为圆心,并且和直线相切的圆的方程.

  2.求过点,圆心在直线上且与轴相切的圆的方程.

  3.已知圆的方程为,求过圆上一点的切线方程.

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.

  III.实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

  好学教育:

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

  (四)反馈训练——形成方法

  问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.

  2.求圆过点的切线方程.

  3.求圆过点的切线方程.

  接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.

  (五)小结反思——拓展引申

  1.课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:.

  ②已知圆的方程是,经过圆上一点的切线的方程是:.

  2.分层作业

  (A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.

  3.激发新疑

  问题七 1.把圆的标准方程展开后是什么形式?

  2.方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  好学教育:

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.

高中数学说课稿8

  一、教学背景分析

  1、教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。

  2、学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3、教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题。

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识。

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣。

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4、教学重点与难点

  (1)重点:圆的标准方程的求法及其应用。

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题。

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  二、教法学法分析

  1、教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。

  2、学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。

  下面我就对具体的教学过程和设计加以说明:

  三、教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图。

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。

  (二)深入探究——获得新知

  问题二 1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2、如果圆心在,半径为时又如何呢?

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。

  (三)应用举例——巩固提高

  I、直接应用 内化新知

  问题三 1、写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点。

  2、写出圆的圆心坐标和半径。

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的`标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

  II、灵活应用 提升能力

  问题四 1、求以点为圆心,并且和直线相切的圆的方程。

  2、求过点,圆心在直线上且与轴相切的圆的方程。

  3、已知圆的方程为,求过圆上一点的切线方程。

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

  III、实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

  (四)反馈训练——形成方法

  问题六 1、求过原点和点,且圆心在直线上的圆的标准方程。

  2、求圆过点的切线方程。

  3、求圆过点的切线方程。

  接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

  (五)小结反思——拓展引申

  1、课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法

  ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:。

  ②已知圆的方程是,经过圆上一点的切线的方程是:。

  2、分层作业

  (A)巩固型作业:教材P81-82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

  3、激发新疑

  问题七 1、把圆的标准方程展开后是什么形式?

  2、方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:

  横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

高中数学说课稿9

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:

  等差数列前n项和的公式。

  教学难点:

  等差数列前n项和的公式的灵活运用。

  教学方法

  启发、讨论、引导式。

  教具:

  现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的'概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10。

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+。。。。。。+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可写成

  Sn=an+an—1+。。。。。。a2+a1

  两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n个

  =n(a1+an)

  所以Sn=(I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

  (1)1+2+3+。。。。。。+n

  (2)1+3+5+。。。。。。+(2n—1)

  (3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  请同学们先完成(1)—(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+。。。。。。+n=

  (2)1+3+5+。。。。。。+(2n—1)=

  (3)2+4+6+。。。。。。+2n==n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

  原式=—1—1—。。。。。。—1=—n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

  作业:P49:13、14、15、17

高中数学说课稿10

  尊敬的各位专家、评委:

  大家好!

  我是卢龙县木井中学数学教师xx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

  一、教材分析

  “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

  二、学情分析

  我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

  三、教学目标

  1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

  过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

  2、教学重点、难点

  教学重点:正弦定理的发现与证明;正弦定理的简单应用。

  教学难点:正弦定理证明及应用。

  四、教学方法与手段

  为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

  五、教学过程

  为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

  (一)创设情景,揭示课题

  问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

  1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

  问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

  [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

  (二)特殊入手,发现规律

  问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

  引导启发学生发现特殊情形下的正弦定理

  (三)类比归纳,严格证明

  问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

  [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

  问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

  [设计说明] 放手给学生实践的机会和时间,使学生真正的'参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

  问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

  教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

  [设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

  (四)强化理解,简单应用

  下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

  [设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

  我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

  问题7:(教材例题1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

  [设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

  强化练习

  让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

  问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

  (五)小结归纳,深化拓展

  1、正弦定理

  2、正弦定理的证明方法

  3、正弦定理的应用

  4、涉及的数学思想和方法。

  [设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

  (六)布置作业,巩固提高

  1、教材10页习题1.1A组第1题。

  2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

  证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

  [设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

高中数学说课稿11

  大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

  一、教材分析

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

  能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

  二、教法

  根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的.推导,并逐步得到深化。

  三、学法

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四、教学过程

  (一)创设情境(3分钟)

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)猜想—推理—证明(15分钟)

  激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)

  在三角形中,角与所对的边满足关系

  注意:1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  (三)总结--应用(3分钟)

  1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (四)讲解例题(8分钟)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中

  一边的对角时解三角形的各种情形。完了把时间交给学生。

  (五)课堂练习(8分钟)

  1.在△ABC中,已知下列条件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列条件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (六)小结反思(3分钟)

  1.它表述了三角形的边与对角的正弦值的关系。

  2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  3.会用向量作为数形结合的工具,将几何问题转化为代数问题。

  五、教学反思

  从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。

高中数学说课稿12

  一、教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二、目标分析:

  教学重点、难点

  重点:集合的含义与表示方法。

  难点:表示法的恰当选择。

  教学目标

  l.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性。互异性。无序性;

  (4)会用集合语言表示有关数学对象;

  2. 过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

  (2)让学生归纳整理本节所学知识。

  3. 情感、态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性。

  三、教法分析

  1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。

  2. 教学手段:在教学中使用投影仪来辅助教学。

  四、过程分析

  (一)创设情景,揭示课题

  1、教师首先提出问题:

  (1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

  引导学生互相交流。 与此同时,教师对学生的活动给予评价。

  2.活动:

  (1)列举生活中的集合的例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1-20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学20xx年9月入学的高一学生的全体。

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。

  一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。

  4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

  2.教师组织引导学生思考以下问题:

  判断以下元素的`全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流。

  让学生充分发表自己的建解。

  3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

  4.教师提出问题,让学生思考

  (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

  如果是集合A的元素,就说属于集合A,记作。

  如果不是集合A的元素,就说不属于集合A,记作。

  (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

  (3)让学生完成教材第6页练习第1题。

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。

  6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题。

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容?

  2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1.课后书面作业:第13页习题1.1A组第4题。

  2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。

高中数学说课稿13

  各位老师:

  大家好!

  我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

  2.教学的重点和难点

  重点:理解古典概型及其概率计算公式。

  难点:古典概型的判断及把一些实际问题转化成古典概型。

  二、教学目标分析

  1.知识与技能目标

  (1)通过试验理解基本事件的概念和特点

  (2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

  2、过程与方法:

  经历公式的推导过程,体验由特殊到一般的数学思想方法。

  3、情感态度与价值观:

  (1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

  (2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

  三、教法与学法分析

  1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

  2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

  ㈠创设情景、引入新课

  在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

  试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

  试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

  在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

  1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

  不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

  2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

  「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

  ㈡思考交流、形成概念

  学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

  [基本事件有如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

  例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?

  先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

  「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

  观察对比,发现两个模拟试验和例1的共同特点:

  让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

  [经概括总结后得到:

  (1)试验中所有可能出现的基本事件只有有限个;(有限性)

  (2)每个基本事件出现的可能性相等。(等可能性)

  我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

  「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

  ㈢观察分析、推导方程

  问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

  教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

  「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

  提问:

  (1)在例1的实验中,出现字母"d"的概率是多少?

  (2)在使用古典概型的概率公式时,应该注意什么?

  「设计意图」教师提问,学生回答,深化对古典概型的`概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  ㈣例题分析、推广应用

  例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  学生先思考再回答,教师对学生没有注意到的关键点加以说明。

  「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。

  例3同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。

  「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  ㈤探究思想、巩固深化

  问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

  要求学生观察对比两种结果,找出问题产生的原因。

  「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

  ㈥总结概括、加深理解

  1.基本事件的特点

  2.古典概型的特点

  3.古典概型的概率计算公式

  学生小结归纳,不足的地方老师补充说明。

  「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

  ㈦布置作业

  课本练习1、2、3

  「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

高中数学说课稿14

  各位评委:下午好!

  我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  (一)教材的地位和作用

  《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。

  (二)、学情分析

  通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面:

  知识层面:学生在已初步掌握了 。

  能力层面:学生在初步已经掌握了用

  初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡.

  (三)教学课时

  本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。)

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为:

  知识与技能:

  过程与方法:

  情感态度:

  (例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育)

  在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的`喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。

  三、重难点分析

  重点确定为:

  要把握这个重点。关键在于理解

  其本质就是

  本节课的难点确定为:

  要突破这个难点,让学生归纳

  作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学--建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。

  五、说教学过程

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景………………….

  (二)比旧悟新………………….

  (三)归纳提炼…………………

  (四)应用新知,熟练掌握 …………………

  (五)总结…………………

  (六)作业布置…………………

  (七)板书设计…………………

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢

  著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想?

高中数学说课稿15

  一、教材分析(说教材):

  1. 教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。

  2. 教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)知识目标:

  (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

  3. 重点,难点以及确定依据:

  下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

  二、教学策略(说教法)

  1. 教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。

  2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  3. 学情分析:(说学法)

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  4. 教学程序及设想:

  (1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  (2)由实例得出本课新的知识点

  (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的`地位和应用,并且逐步培养学生良好的个性品质目标。

  (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

  (7)板书

  (8)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  教学程序:

  (一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

  高中数学集合教学反思

  集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

  第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

  第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

  第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

【高中数学说课稿】相关文章:

高中数学说课稿《等比数列》08-19

有关高中数学说课稿锦集8篇08-27

实用的高中数学说课稿范文集合5篇09-10

高中数学《等比数列的前n项和》说课稿10-17

高中数学教学设计10-27

高中数学教学总结06-01

高中数学教学总结09-30

高中数学教学心得10-06

高中数学培训心得06-15