高二数学教学计划15篇
时光在流逝,从不停歇,相信大家对即将到来的工作生活满心期待吧!此时此刻我们需要开始制定一个计划。好的计划都具备一些什么特点呢?下面是小编为大家整理的高二数学教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。

高二数学教学计划1
一、学生基本情况
261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,
二、教学要求
(一)情意目标
(1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。
(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。
(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿
(二)能力要求
1、培养学生记忆能力。
(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。
(2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)经过解不等式及不等式组的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。
(2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)经过不等式引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)经过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。
(6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
4、培养学生的观察能力。
(1)在比较鉴别中,提高观察的准确性和完整性。
(2)经过对个性特征的分析研究,提高观察的深刻性。
(三)知识要求
1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;
2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。
3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。
三、教材简要分析
1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。
2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。
3、圆锥曲线包括椭圆、双曲线、抛物线的.定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。
四、重点与难点
(一)重点
1、不等式的证明、解法。
2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。
3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。
(二)难点
1、含绝对值不等式的解法,不等式的证明。
2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。
3、用坐标法研究几何问题,求曲线方程的一般方法。
五、教学措施
1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。
4、积极参加与组织集体备课,共同研究,努力提高授课质量
5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。
6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。
六、课时安排
本学期共81课时
1、不等式18课时
2、直线与圆的方程25课时
3、圆锥曲线20课时
4、研究课18课时
高二数学教学计划2
(1)知识目标:
1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标:
1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的`直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}
由两点间的距离公式,点M适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
I.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本P77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
II.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为 ,求过圆上一点 的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
III.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以C(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程.
3.求圆x2 y2=13过点(-2,3)的切线方程.
4.已知圆的方程为 ,求过点 的切线方程.
(五)小结反思(拓展引申)
1.课堂小结:
(1)圆心为C(a,b),半径为r 的圆的标准方程为:
当圆心在原点时,圆的标准方程为:
(2) 求圆的方程的方法:①找出圆心和半径;②待定系数法
(3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:
(4) 求解应用问题的一般方法
2.分层作业:(A)巩固型作业:课本P81-82:(习题7.6)1.2.4
(B)思维拓展型作业:
试推导过圆 上一点 的切线方程.
3.激发新疑:
问题七:1.把圆的标准方程展开后是什么形式?
2.方程: 的曲线是什么图形?
教学设计说明
圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.
本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力。
高二数学教学计划3
一、指导思想:
在我校整体构建的和谐教学模式下,学生可以在九年义务教育数学课程的基础上,进一步提高作为未来公民的数学素养,以适应个人发展和社会进步的需要。具体目标如下。
1.获取必要的数学基础知识和技能,了解基本数学概念和结论的本质,了解概念和结论的背景和应用,了解其中包含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习和探究活动,体验数学发现和创造的过程。
2.提高空间想象、抽象概括、推理论证、计算求解、数据处理等基本能力。
3.提高数学上提出问题、分析问题和解决问题(包括简单的实际问题)的能力,数学上表达和交流的能力,培养独立获取数学知识的能力。
4.培养数学应用和创新意识,努力思考和判断现实世界中包含的一些数学模型。
5.提高学习数学的兴趣,树立学好数学的信心,形成坚忍不拔的精神和科学的态度。
6.有一定的数学视野,逐渐了解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,崇尚数学的`理性精神,体验数学的审美意义,从而进一步树立辩证唯物主义和历史唯物主义的世界观。
二、教材的特点:
我们用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现基础、时代、典型性、可接受性等。并具有以下特征:
1.“亲和力”:以生动活泼的方式激发兴趣和美感,激发学习热情。
2.“问题”:用适时问题指导数学活动,培养问题意识,培养创新精神。
3.“科学”与“思想性”:通过不同数学内容的联系与启发,强调类比、通俗化、特殊化、转化等思想方法的应用,学会数学思维,提高数学思维能力,培养理性精神。
4.“时代性”和“适用性”:用具有时代性和现实感的材料创设情境,加强数学活动,培养应用意识。
三、教学方法分析:
1.选择内容典型、丰富、熟悉的材料,用生动活泼的语言,创造能反映数学、数学思想方法、数学应用的学习情境的概念和结论,让学生对数学产生亲切感,引发学生“看发生了什么”的冲动,以培养兴趣。
2.通过“观察”、“思考”、“探究”等栏目,可以激发学生的思考和探究活动,提高学生的学习效率
高一班学习不错,但是学生自我意识差,自控力弱,需要时不时提醒学生培养自我意识。上课最大的问题是计算能力差。学生不喜欢算题。他们只关注想法。因此,在未来的教学中,重点是培养学生的计算能力,进一步提高他们的思维能力。同时,由于初中课程改革,高中教材与初中教材衔接不够强,需要在新的教学时间补充一些内容。所以时间可能还是比较紧。同时它的基础比较薄弱,只能在教学中先注重基础再注重基础,力求每节课落实一个知识点,掌握一个知识点。
五.教学措施:
1.激发学生的学习兴趣。通过数学活动、故事、吸引人的课堂、合理的要求、师生对话等方式,可以建立学生的学习信心,在主观行动下提高和提高学生的学习兴趣。
2.注意从实例出发,从感性走向理性;注意运用比较的方法反复比较相似的概念;注意结合直观的图形来说明抽象的知识;关注已有知识,启发学生思考。
3.加强学生逻辑思维能力的培养,就是解决实际问题,培养和提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。
4.掌握公式的推导和内部联系;加强审查和检查工作;掌握典型例题的分析,讲解解题的关键和基本方法,注重提高学生分析问题的能力。
5.自始至终实施整体建设,和谐教学。
6.注重数学应用意识和能力的培养。
高二数学教学计划4
一、教学内容与内容解析
1.内容:
统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:
本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.
本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量Xi与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,Xn为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.
从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
二、教学目标与目标解析
1.目标:
(1)通过实例,了解学习统计的意义,了解统计学的基本内容和方法.
(2)通过实例,了解随机抽样的必要性.
(3)理解随机抽样的概念.这里随机抽样的概念在初中阶段学生已经学习过,但在此处学习正是体现知识的螺旋上升,这里提出的总体、个体和样本的概念应该更加理性.
(4)通过实例分析随机抽样应满足的基本条件.作为教师要明确学习随机抽样的主要目的是用样本估计总体,要使所抽取的样本能估计总体,抽取数据的方法要根据对数据的要求而定,方法应该是量身定做的.
(5)体会简单随机抽样的方法.教学过程应该充分体现学生的主体作用,不囿于教材顺序的限定,结合学生已有的知识结构,充分展示学生的学习经验和能力.
2.目标解析:
教学目标(3)和(4)是本节课的教学重点也是难点。我们要建立一种数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。借助学生已有生活常识,形成推理的直观认识;让学生通过自己动手体验数学的一种基本思维过程,经历人们学习和生活中经常使用的思维活动。
教学目标(5)是学生初学时不易达到的目标,教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,是学生体会解决问题时应该关注的要点,体会简单随机抽样的方法.应用简单随机抽样的方法。
三、教学问题诊断分析
教学重点、难点
重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比
难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。
本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的.重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.
如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。
四、教学支持条件
本节课教学支持条件首先是学生已经学习过随机抽样的概念,因此教学可以在此基础上展开.教材例题的选取都来自于学生的生活经验,便于学生理解.可以通过投影和计算机,扩展学生收集数据的方法.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣.
五、教学过程设计
六、目标检测设计
(1)利用随机数表法从40件产品中抽取10件检查。
(2)分小组进行社会问题的实际调查,题目自拟。
(设计意图:通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力;实习作业的设置为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。)
高二数学教学计划5
一、指导思想:
在学校教学工作意见指导下,在学部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的.美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二.学生基本情况
高二倾理学生共有166人,学生学习数学的气氛不浓、基础很差。由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,高一数学成绩充分反映没有尖子生,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。
三、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、教学措施:
1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
五、教学进度表:(略)
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学上学期教学计划,希望大家喜欢。
高二数学教学计划6
一、指导思想:
在学校教育工作意见指导下,严格执行学校各教育教育制度和要求,加强数学教育研究,提高全组教师教育、教育研究水平,明确任务,团结合作,圆满完成教育教育研究任务。具体任务如下:
1.让学生获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,理解概念、结论等产生的背景、应用,体验其中包含的数学思想和方法,以及其在后续学习中的作用。通过不同形式的自主学习、探索活动,体验数学发现和创造的历史。
2.提高学生空间想象力、抽象摘要、推理论证、运算解决、数据处理等基本能力。
3.提高学生提出、分析和解决数学问题(包括简单的实际问题)的`能力,提高数学表现和交流的能力,发展独立获得数学知识的能力。
4.发展学生数学应用意识和创新意识,努力思考和判断现实世界包含的数学模式。
5.提高学生学习数学的兴趣,确立学习数学的自信,形成坚持不懈的钻研精神和科学态度。
6.使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思考习惯,崇尚数学的理性精神,体验数学的美学意义,进一步确立辩证唯物主义和历史唯物主义世界观。
二、教法分析:
1.选择与内容密切相关、典型、丰富、学生熟悉的素材,用生动活泼的语言创造数学概念和结论、数学思想和方法、数学应用的学习情况,使学生产生对数学的亲切感,引起学生看到最后的冲动,达到培养兴趣的目的。
2.通过观察、思考、探索等栏目,引起学生的思考和探索活动,切实改善学生的学习方式。
3.在教育中强调类比、普及、特殊化、归化等数学思想方法,尽量养成逻辑思维的习惯。
三、教育措施:
1.全体老师诚实团结,相互关心,相互支持,努力使我们的高二数学组成为充满活力的优秀集团。互相上课,取长补短,完善自己,加强形式、时间、场所的交流。在日常工作中,保持和优化个人特色,实现资源共享,同类班级相关工作基本统一。
2.认真执行,做好集体准备课程。每周四上午三四节集体备课,认真分析教材内容,研讨其中的重点、难点、教学方法等。
3.详细规划,保证练习质量。在教育中充分利用资料,要求学生根据教育进度完成相应的练习题,每周以内容滚动式制作周练试卷,老师必须整理,存在的普遍问题必须安排时间评价,成绩在星期四之前自己输入年级计算机。
4.抓住第二课,稳定数学优秀学生,培养数学能力兴趣。各班培养好本班优生,注意激发学员学习兴趣,随时注意学员学习方法辅导。
5.加强指导工作。对于数学学习困难的学生来说,教师的下班指导非常重要。在教师教育中,要尽快把握班级学生的数学学习状况,有目的地进行指导工作,注意班级优生层,不能忽视班级困难的学生。
高二数学教学计划7
教学目标:
1、知识与技能
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法.
2、过程与方法
(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;
(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.
3、情感与价值观
通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.
教学重点、难点:
重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.
难点:把自然语言转化为算法语言.
教学过程:
(一)创设情景、导入课题
问题1:把大象放入冰箱分几步?
第一步:把冰箱门打开;
第二步:把大象放进冰箱;
第三步:把冰箱门关上.
问题2:指出在家中烧开水的过程分几步?(略)
问题3:如何求一元二次方程 的解?
第一步:计算 ;
第二步:如果 ,
如果 ,方程无解
第三步:下结论.输出方程的根或无解的信息.
注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:
①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。
②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。
③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
注:其他还有输入性、输出性等特征,结论不固定.
提问:算法是如何定义?
(二)师生互动、讲解新课
x-2y=-1 ①
回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程组的解为 x= ;y= 。
思考1:你能写出求解一般的二元一次方程组的步骤吗?
上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法
对于一般的二元一次方程组 可以写出类似的求解步骤:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程组的解为
(高斯消去法)
思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的.一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.
算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.
广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算
法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.
(三)例题剖析,巩固提高
例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?
算法:
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
课堂练习1:
整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
算法设计:
第一步,令i=2;
第二步,用i除89,得到余数r;
第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;
第四步,判断“i>88”是否成立?若是,则89是质
数,结束算法;否则,返回第二步.
探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?
例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?
算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。
S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。
S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只
S4 最后确定小鸡的数量:17-7=10只.
算法2:S1 首先设 只小鸡, 只小兔。
S2 再列方程组为:
S3 解方程组得:
S4 指出小鸡10只,小兔7只。
算法3:S1 首先设 只小鸡,则有 只小兔
S2 列方程
S3 解方程得 ,则
S4 指出小鸡10只,小兔7只.
算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿
S2 有小兔 只
S3 有小鸡 只
S4 指出小鸡10只,小兔7只.
算法5:S1 有小兔 只
S2 有小鸡 只
二分法:
对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.
例3(课本P4例2):写
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,则方程 的解就是函数f(x)的零点.
第一步,令f(x)= ,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点 .
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b];
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思
1、算法的主要特点:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.
2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明.
高二数学教学计划8
一、指导思想
努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的.意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。
高二数学教学计划9
一、指导思想:
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。立足学生的实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、学生基本情况分析:
1、基本情况:高二10个理科班,4个文科班,每个班的学生对数学学习各不相同。其中,1—6班为实验班,大部分人,基础较好,数学学习兴趣较为浓厚。还有些学生对自己学习数学的信心不足,学习积极性和主动性不够,大部分学生学习上只满足完成老师所布置的任务,对于灵活运用知识分析问题、解决问题的能力还不够强,不能举一反三进一步挖深问题,在选例题时尽量选中等难度题目,以适应大多数学生的适应能力。
三、教学目标
针对以上问题的出现,在本学期拟订以下目标和措施。其具体目标如下:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
四、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五、教学措施:
1、抓好课堂教学,提高教学效益。 课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。
①认真落实,搞好集体备课。每周至少进行一次集体备课,星期一的上午升旗后至第二节课结束。每位老师都要提前一周进行单元式的备课,集体备课时,由两名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
②加大课堂教改力度,培养学生的自主学习能力。最有效的`学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,逐步形成知识体系,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。 课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
①加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。
②加强对双差生的辅导。双差生是一个班级教学成败的关键,因此,我将下大力气辅导双差生,通过个别或集体的方法进行耐性教学,从而使他们的纪律以及数学成绩有一定的进步。
3、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。
六、教学进度安排
本学期授课时间约为20周,本学期的教学任务:
第一学段:数学必修3;
第二学段:理科2-1。另完成选修4—5,和选修4—4的教学任务,保证完成教学任务。
高二数学教学计划10
一、教材依据
本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
二、教材分析
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
三、教学目标
知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系。
过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
四、教学重点
重点:直线的点斜式方程和斜截式方程。
五、教学难点
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
六、教学准备
1.教学方法的选择:启发、引导、讨论.
创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。
2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的`思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:
①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组讨论。
七、教学过程
问 题
师生活动
设计意图
1、在直线坐标系内确定一条直线,应知道哪些条件?
学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。
使学生在已有知识和经验的基础上,探索新知。
2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。
学生根据斜率公式,可以得到,当 时, ,即
(1)
教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。
培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。
3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?
学生验证,教师引导。
使学生了解方程为直线方程必须满两个条件。
(2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?
学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.
使学生了解方程为直线方程必须满两个条件。
4、直线的点斜式方程能否表示坐标平面上的所有直线呢?
学生分组互相讨论,然后说明理由。
使学生理解直线的点斜式方程的适用范围。
5、(1) 轴所在直线的方程是什么? 轴所在直线的方程是什么?
(2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?
(3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?
教师学生引导通过画图分析,求得问题的解决。
进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。
6、例2、例4的教学。
教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。
学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。
7、例3的教学。
求经过点 ,斜率为 的直线 的方程。
学生独立求出直线 的方程:
(2)
在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。
引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。
8、观察方程 ,它的形式具有什么特点?
学生讨论,教师及时给予评价。
深入理解和掌握斜截式方程的特点?
9、直线 在 轴上的截距是什么?
学生思考回答,教师评价。
使学生理解“截距”与“距离”两个概念的区别。
10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?
学生思考、讨论,教师评价、归纳概括。
体会直线的斜截式方程与一次函数的关系.
11、课堂练习第65页练习第1,2,3题。
学生独立完成,教师检查反馈。
巩固本节课所学过的知识。
12、小结
教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?
使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。
13、布置作业:第77页第5题
学生课后独立完成。
巩固深化
八、教学反思
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。
本节课的基本题形:
1、已知直线上一点及直线的倾斜角,求直线的方程并作图;
2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。
高二数学教学计划11
一、有计划的安排一学期的教学工作计划:
新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划及讨论如何响应学校的号召,开展主体式教学模式
的教学改革活动。
一个完整完善的工作计划,能保证教学工作的顺利开展和完满完成,所以一定要加以十二分的重视,并要努力做到保质保量完成。
在以后的教学过程中,坚持每周一次的关于教学工作情况总结的备课组活动,发现情况,及时讨论及时解决。
二、定时进行备课组活动,解决有关问题
备课组将进行每周一次的活动,内容包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的动态、数学教学的`改革与创新等。一般每次
备课组活动都有专人主要负责发言,时间为二节课。经过精心的准备,每次的备课组活动都将能解决一到几个相关的问题,各备课组成员的教学研
究水平也会在不知不觉中得到提高。
三、积极抓好日常的教学工作程序,确保教学工作的有效开展
按照学校的要求,积极认真地做好课前的备课资料的搜集工作,然后集体备课,制作成教学课件后共享,全备课组共用。一般要求每人轮流制作,
一人一节,上课前两至三天完成。每位教师的电教课比例都要在90%以上。每周至少两次的学生作业,要求全批全改,发现问题及时解决,及时在
班上 评讲,及时反馈;每章至少一份的课外练习题,要求要有一定的知识覆盖面,有一定的难度和深度,每章由专人负责出题;每章一次的测验
题,也由专人负责出题,并要达到一定的预期效果。
四、积极参加教学改革工作,使学校的教研水平向更高处推进
本学期学校全面推行主体式的教学模式,要使学生参与到教学的过程中来,更好地提高他们学习的兴趣和学习的积极性,使他们更自主地学习,学
会学习的方法。积极响应学校教学改革的要求,充分利用网上资源,使用分组讨论式教学,充分体现以学生为主体的教学模式,不断提高自身的教
学水平。
高二数学教学计划12
一、教材分析。
1、教材地位、作用。
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析。
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标。
1、知识与技能目标。
(1)理解等可能事件的概念及概率计算公式。
(2)能够准确计算等可能事件的概率。
2、过程与方法。
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观。
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点。
1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程。
1、创设情境,提出问题。
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维。形成概念、
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:
(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
(让学生交流讨论,教师再加以总结、概括)
让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的.顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
____________________________________________________________________________________。
由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;
②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解。
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较,推导公式。
师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)
生:试验二中,出现各个点的概率相等,即
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)
由概率的加法公式,得
P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1
因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,
P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==
P(“出现偶数点”)=?=
师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?
生:_________________________________________________________________。
学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高。
例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:
探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:
P(“答对”)=1/15
解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
例3:同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
(教师先让学生独立完成,再抽两位不同答案的学生回答)
学生1:
①所有可能的结果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。
②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。
③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得
学生2:
①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。
由表中可知同时掷两个骰子的结果共有36种。
②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。
③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)
生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。
师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。
本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理,课堂小结。
(1)本节课你学习到了哪些知识?
(2)本节课渗透了哪些数学思想方法?
7、作业布置。
(1)阅读本节教材内容
(2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
(3)选做题课本134页习题B组第1题
8、教学反思。
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。
本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
高二数学教学计划13
一、指导思想:
在学校教学工作意见指导下,在年级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。
二、教材简析
使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。
三、教学任务
本学期上半期授课内容为《选修1-2》和《选修4-4》,中段考后进入第一轮复习。
四、学生基本情况及教学目标
认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。
高二文科学生共有10个班,其中尖尖班2个,8个平行重点班。尖尖班的学生重点是数学尖子生的培养,冲刺高考数学高分为目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。
五、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的`冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
六、教学措施:
1、认真落实,搞好集体备课。每两周进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。并根据需要在年级开设数学困难生补充辅导班。
七、教师任务分工安排表
周末试卷出卷以及备课组集体备课主讲人时间安排表
| 周数 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 负责人 | 张国应 | 樊国林 | 时俊 | 卢三顺 | 祝入云 | 张国应 | 樊国林 | 时俊 | 卢三顺 | 祝入云 |
| 周数 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 负责人 | 张国应 | 樊国林 | 时俊 | 卢三顺 | 祝入云 | 张国应 | 樊国林 | 时俊 | 卢三顺 | 祝入云 |
八、教学进度表:略
最后,希望小编整理的下学期高二数学教学计划对您有所帮助,祝同学们学习进步。
高二数学教学计划14
一、指导思想:
以1215课堂教学模式为指引,以学校教导处、教研组、年级部工作计划为指南,加强高二数学备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。
二、学情分析及相关措施:
今年高二重新分班后我接了高二(1)和高二(13)一理一文两个班的数学教学,学生程度不是太好而且新来的学生需要适应过程,教学中要从学生的认知水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二与高一的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:
(1)注意研究学生,做好高二与高一学习方法的衔接。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的`学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过周月考和单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备,用周周练及时的巩固复习所学内容知识点,以及一些常见的题型和方法。
(5)合理利用晚自习的时间抓好尖子生与后进生的辅导工作,分析周周练的作业和课外辅导资料。适当安排时间将高一的重点内容带着学生们复习回顾。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
三、教学进度(草稿):
第1周 | 数学必修2:立体几何 1.1空间几何体的结构 |
第2周 | |
第3周 | |
第4周 | |
第5周 | 2.2直线、平面平行的判定及其性质(1)(2)(3)(4) |
第6周 | 2.3直线、平面垂直的判定及其性质(1)(2)(3)(4) |
第7周 | 2.3直线、平面垂直的判定及其性质(4) 空间点、线、面复习 |
第8周 | 选修2-1:空间向量 第三章3.1空间向量及其运算 |
第9周 | 空间向量及其运算 |
第10周 | 期中考试 |
第11周 | 空间向量 |
第12周 | 1.1命题及其关系 |
第13周 | 1.3简单的逻辑连结词 |
第14周 | |
第15周 | 2.1椭圆(3课时) |
第16周 | 2.2双曲线(2课时) |
第17周 | 2.3抛物线(1课时) |
第18周 | 曲线与方程(2课时) |
第19周 | 总复习 |
第20周 | 期末考试 |
高二数学教学计划15
数学分析
1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。
2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。
3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的.变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。
4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。
教育分析
1。有助于学生数形结合思想的培养。
解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的'重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。
2。是培养学生运算能力的重要载体。
运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。
课标解读
1。整体定位
“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。
“解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。
2。具体要求
(1)直线与方程
①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;
②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;
③能根据斜率判定两条直线平行或垂直;
④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;
⑤能用解方程组的方法求两直线的交点坐标;
⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程
①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;
②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;
③能用直线和圆的方程解决一些简单的问题。
(3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。
(4)空间直角坐标系
①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;
②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。
3。课标解读
(1)要注重知识的发生与发展的过程
解析几何初步的教学,要注重知识的发生与发展的`过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。
数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。
比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。
(2)在高中阶段,直线的斜率一般一般有三种表示方式
①用倾斜角的正切
这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。
这需要先引入0°到180°的正切函数的概念。
②用向量
内容结构
1。知识内容
2。 章节安排
本章教学时间约需18课时,具体分配如下:
1 直线与直线的方程 8课时
2 圆与圆的方程 5课时
3 空间直角坐标系 3课时
【高二数学教学计划】相关文章:
高二数学的教学计划06-01
高二数学教学计划10-02
高二数学教学计划07-08
高二数学下册的教学计划10-21
高二数学教学计划(15篇)08-14
高二数学教学计划7篇06-23
高二数学教学计划15篇08-07
高二数学教学计划(通用15篇)11-05
高二数学教学计划合集15篇10-17