运算律教学反思

时间:2025-02-08 15:01:53 教学反思 我要投稿
  • 相关推荐

运算律教学反思

  作为一位优秀的老师,我们要有一流的课堂教学能力,借助教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编帮大家整理的运算律教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

运算律教学反思

运算律教学反思1

  今天我和学生一起学习了有理数的加法。课堂环节基本上是这样的:

  一、复习导入

  提问有理数的加法法则并进行了相应练习。发现同学们这部分掌握的非常好,及时鼓励表扬的学生。那么我们这一节课一起看一下加法的运算律在有理数范围内是否也适应呢?我们一起探讨一下:同桌之间进行交流

  (1)(-8)+(-9)(-9)+(-8)

  (2)4+(-7)(-7)+4

  (3)6+(-2)(-2)+6

  (4)[2+(-3)]+(-8)2+[(-3)+(-8)]

  (5)10+[(-10)+(-5)][10+(-10)]+(-5)

  二、组内探究合作交流

  1有理数的加法的`运算律

  2紧跟跟踪练习:要求学生独立完成,并找4号同学去黑板练习,并进行讲解点拨总结规律方法。

  1.12+(-8)+11+(-2)+(-12)

  2.6.35+(-0.6)+3.25+(-5.4)

  3.1+(-2)+3+(-4)+…+20xx+(-20xx)

  三、课堂小结

  谈谈本节课的收获。

  四、当堂检测

  要求学生独立完成,并找同学核对答案。

  【达标检测】试一试你能行!

  1.(-28)+29=29+(-28)利用的是加法的________________.

  2.(-3)+7+(-4)+3=[(-3)+3]+7+(-4)利用的是________________.

  3.若a,b互为相反数,且c的绝对值是1,则c-a-b的值为( ).

  4.计算:

  (1)(-7)+(-6.5)+(-3)+6.5;

  (2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;

  (3)(-18.65)+(-6.15)+18.15+6.15.

  五、课堂评价:学科班长评出本节课的优胜小组及个人。

  教学反思:本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生通过自主互助交流,师生不断地总结规律和方法,解题技巧,总体来说课堂效果很好。学生都能掌握解题技巧。

运算律教学反思2

  简便运算是一种高级的混合运算,是混合运算的技巧,学好了简便运算,不仅能提高计算能力、计算速度及正确率,还能使复杂的计算变得简单,也就是变难为易,变繁为简,变慢为快。同时能灵活、合理地运用各种定律、性质、法则等达到融会贯通的境界,是计算题中最能锻炼学生思维能力、开拓学生思路的一种题型。所以,在计算题教学中应重视简便运算,注重简便运算灵活思路的学习,合理地进行简便运算,使学生的思维能力得到提高。五年级的简便运算的教学建立在学生已有对简便运算的认识上。小数乘法简便运算是整数乘法简便运算的延伸。

  这节课我以学生先试后导,先练后讲为主线进行设计,突出学生的主体地位,发挥学生知识迁移能力。学生在整体认知小数乘法简便运算的运算律方面较容易,在计算过程中不少学生忽略了小数点的移动,有以下几点值得反思。

  一、复习题的设计针对性强,为新课学习做好铺垫。

  做好已有知识结构的迁移。在复习时先请两名学生到黑板上做:25×12和 87×46+ 54×87 ,同时其他同学集体练习。指名说说自己是怎样想的,提示学生运用的是哪一个乘法运算定律,实际有学生说第二题用的是乘法结合律,我并没有急于否定学生的答案,而是问学生乘法结合律的字母表达式和乘法分配率的字母表达式,并组织学生进行区别,以便更好的运用这两个定律解题。通过复习使每一个学生进一步明确乘法的运算定律及它们之间的联系与区别,更加清楚如何运用运算定律解题。同时渗透并思考,这些运算定律在小数乘法中能不能用,激发学生对小数乘法的简便运算的猜想和求知的欲望。

  二、新课学习先试后导,善用旧知解疑。

  教师出示例题4后,简单分析题意,学生用自己的方法解题。

  0.8×1.3○1.3×0.8

  (0.9×0.4)×0.5○0.9×(0.4×0.5 )

  (3.2+2.8)×0.6○3.2×0.6+2.8×0.6

  有学生通过计算两边的算式结果来判断,大多数学生看见算式联想到简便运算来判断,第一种算法确定算式两边结果相等,第二种算法提供了学生思维判断的方法。这样有效地把整数乘法的运算律和小数乘法结合起来,运算方法在小数乘法中一样有效。

  为了学生更好地运用运算律,安排了三题练习题

  0.25×0.7×4、 1.25×2.4 3.2×1.02

  保留了教材中试一试第一题,修改了第二题,增加了第三题题,第一题让学生理解乘法交换律,第二题运用乘法交换律和结合律,第三题是运用乘法分配律。第二题中2.4的分解是教学时一个难点,不少学生着重把24分解成8×4,忽略了小数点,这个环节的处理不够好,未能预料。第三题的'教学也是一个难点,不少学生意识不到把1.02分解成1+0.02,只是一味去分解3.2。

  三、巩固练习类型多样,提高学生能力。

  巩固练习的设计除了根据运算定律填空外,还设计了各种类型的简算题,如:12.5×4.8 0.72×101 3.8×9.9 1.01×2.6 0.25×0.125× 0.4×0.8 0.4×8.2×25-0.3

  这些题里有的接近整数、有的超过整数、有的要先转化再做,有的运用乘法结合律做,有的运用乘法分配律做,有的是部分简算,几乎涵盖了所有小数乘法简算的各种类型 ,另外还出现了部分简算的题,这样的题学生掌握的不好, 关键是根据运算定律判断是否能简算。最后是拓展提高,3.67×8.9 + 36.7×0.11 86.9×1.73 + 8.69×7.3 这两道题分别都有两种解法,学生根据刚才做题的经验,分析后很快发现36.7和3.67 、86.9和8.69可以互相转化,怎样才能使转化后的数的积不变,利用积不变的规律就能解决问题。这样提高了学生分析能力和灵活解题的能力。

  不足之处:

  整节课由于课堂密度较大,所以学生说的多,动笔练习较少,使得一部分同学没有掌握简算的方法,尤其是需要转化的题掌握的不好。其次,在新知识的探索阶段,教师给学生的时间较少,使得同学没有充分发表自己的意见,小组内同学之间交流的较少。

运算律教学反思3

  本学期学习了乘法运算定律。乘法运算定律包括乘法交换律、乘法结合律。

  学生对于加法交换律和乘法的交换律掌握较好,然而对于乘法结合律则运用得不太理想。

  反思造成的原因及解决办法如下:

  第一,学生现在只是能够初步认识,还不明白这几个运算定律的作用和意义。

  第二,学生不能正确的分析算式并正确的运用运算定律,如遇到25× 16就不知道如何计算 ,有时会把16分成10×6,有时会写成25×10+6 ,针对上述情况还需对学生加强算理、算法的理解,更要在学生的脑海中渗透“凑整”的思想。

  第三,对于有些算式,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。

  综上所述,学生并没有深刻体会到运算定律带来的方便,解决办法可以是多讲多练,多做一些对比性强(能简便与不简便的混合运算)的`题目,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,(以能凑成整十、整百的优先组合为原则)也就是如何做题。等接触的题目类型多了,我想学生会感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣

运算律教学反思4

  本节课主要内容是加法的交换律和结合律,并且孩子们在小学阶段已经学过假发的结合律何交换律。所以本节课我以2个问题复习导入。第一个问题:有理数加法法则什么?第二个以四道题导入15+28+5=?13+14+6+7=???50+18+10=?12+7+8+3=,回顾用加法交换律和结合律简便计算。在新授内容出示两组对比题,通过让学生观察、比较、猜想、验证。让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律从而得出结论。课已经上完了,现通过反思,找出不足,从而提高自己的教学水平:

  1、提供自主探索的机会本节课以学生身边熟悉的.知识点切入,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  2、关注学生已有的知识经验。在学习加法运算律之前,学生对加法的运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。

  3、引导学生在体验中感悟数学。教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。

  不足之处:

  1、在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

  2、安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。

运算律教学反思5

  教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  我们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解如:(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和 25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法?对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的.特点,灵活选择适当的算法的目的。

  4、多练。

  针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

运算律教学反思6

  学生从二年级就开始接触乘法计算,对乘法积累了较多的感性认识,这是学习乘法交换律和结合律的基础。对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境,激发学生的学习兴趣,让学生发现问题,提出猜想、进行验证、总结应用的思路进行的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

  1、提供自主探索的机会。

  “动手实践、自主探索与合作交流是学习数学的重要方式”。在探索整数乘法运算律推广到小数的过程中,我为学生提供自主探索的时间和空间,使学生在学习活动中获得成功的体验,增强了学习数学的信心。

  2、关注学生已有的知识经验。

  在学习整数乘法运算律推广到小数之前,学生对整数乘法运算律已有了较多的.感性认识,为新知学习奠定了良好的基础。教学中让学生处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  3、引导学生在体验中感悟数学。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

  在教学工作中,并对照开学初的计划,我从以下方面加强改进日常教学:

  1、注重从学生已有认知基础入手。如:紧密联系整数乘、除法的意义、计算方法、四则混合运算,使学生把整数运算知识迁移到小数运算中来。

  2、注意教给学生运用多种计算方法,以培养学生的灵活计算能力。如在简便运算中,让学生分别用竖式计算和用运算律计算,通过比较,让学生认识到这些规律具有的普遍意义,又能对这些知识得到加深理解和牢固掌握。

  3、注重培养和提高学生的分析能力和审题能力,能解决小数乘、除法在实际生活中的应用。

  4、注重后进生双基的补习,让培优转差落到实处,以提高整体水平。

  虽然班级的基础偏差,面临的形势比较严峻,但只要与学生建立良好的师生关系,日常加强题组训练,突破难点,培养起学生学习数学的兴趣,为进一步的学习打下更好基础。

运算律教学反思7

  一年级时学生就开始接触加法计算,对加法积累了较多的感性认识,这是学习加法交换律和结合律的基础。

  教材安排这两个运算教学时,采用了不完全的归纳推理。两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解决之间的共同特点,初步感受运算规律。然后让学生根据对运算律的出步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经历运算律的`发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

  《乘法运算律》这节课我以建构主义学习理论位指导,力求体现“以学生发展为本”的指导思想。基于这种思想,设计课堂教学时,注意了以下几个问题:

  1、提供自主探索的机会。

  “动手实践、自主探索与合作交流上学习数学的重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。

  2、关注学生已有的知识经验。

  在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知学习奠定了良好的基础。教学中始终处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  3、引导学生在体验中感悟数学。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

运算律教学反思8

  1、猜想一种学习的方法,很多世界性的难题和这些难题的解决都得益于猜想这样一种学习的方法。

  关于这节课的第一个环节——由加法交换律、加法结合律进而猜想出乘法交换律、乘法结合律的内容。那么我在想我们在解决一个实际的问题时,会不会有一个即定的方法。通常情况下我们不可能知道应该朝哪一个方向去猜想,需要我们去搜索,有时它会突然冒出来(即直觉)。所以我认为猜想的重点是怎样把联想的对象(这里指加法交换律、加法结合律)找出来(即找到一个思考的方向)这应该是这节课的关键。

  2、验证的过程。

  这节课验证的过程是这样:因为所有学生写出来的算式都证明这个定律是正确,所以这个定律是对的。这个过程对吗?实际上这个过程不一定正确,虽然在小学阶段主要采用的是演绎法和不完全归纳法。验证的过程应该是学生对定律内容的`理解,举例子只能说明学生对定律内容的一个表层的认识,是非常具体的(即根据定律的字面意思去理解)。应该引导学生从乘法意义上理解乘法交换律(如6×7,7×6它们都表示6个7相加是多少或7个6相加是多少,它们表示的是同一个意义,所以它们的积是相同的),这样的话学生对乘法交换律的理解是更进一步的即在抽象层面上的。我后来觉得是否可以这样:当学生引出了字母公式后,师:我们通过举例子可以知道这个定律是正确的,那你们还有其他的想法?(如果没有)师:能不能根据乘法意义来理解这个乘法交换律?(让学生说说怎么去理解)

  3、缺乏深度。

  从这几个方面来说:1对两个定律的理解,停留在表面没有对内容进行深入的理解(进行抽象的概括)从学生方面来说,缺乏挑战,没有难度。特别对乘法结合律的理解,没有能及时地进行总结,以至当出现于内容不是一致的时候)学生就觉得有点困难。对结合律的理解应该让学生理解到结合律就是三(几)个数相乘,不管那两个数相乘再和第三个数相乘,它们的积都一样。要使学生这样去理解。第一,通过举例子(写出算式来验证);第二,通过生活实际来理解三个数相乘是怎么回事。最后可以问:学习了这两个定律你认为有什么用?(让学生说到可以使计算简便)。我认为如果这样的话,自己这节课有个非常突出的特点就是以一种学习方法贯串整节课:联想_猜想_验证_抽象

运算律教学反思9

  本单元内容包括:加法交换律和结合律,乘法交换律、结合律和分配律,应用加法和乘法运算律进行一些简便计算,应用加法和乘法运算律解决一些实际问题。这部分内容主要引导学生在已经理解并掌握了整数四则运算的意义,和整数四则混合运算的运算顺序,能正确解决有关实际问题的基础上,对加法和乘法运算中的一些规律进行概括和总结。加法和乘法的运算律,不仅对整数运算适用,对小数,分数的运算,乃至对中学阶段的有理数、实数的运算也同样适用,是小学数学知识体系中最重要、最基础的知识之一。学习这部分内容,不但有助于学生加深对四则运算意义和计算方法的理解,而且能有效发展学生灵活选择简便计算的策略,同时也为学生以后学习和探索有关小数,分数的简便计算奠定坚实的基础。鉴于本单元教学内容的特殊性,教学时我主要关注以下几方面培养学生自主简便计算的意识。

  一、充分利用已有的知识经验,引导学生通过自主的活动理解并掌握运算律。 回忆在以前的学习中,学生对四则运算中的一些规律已经有了比较丰富的感性认识。

  如,学习加法和乘法时,用交换加数或乘数的位置再算一遍的方法验算加法或乘法;口算12×3时,先算10×3=30,2×3=6,再算30+6=36。教学中我主要引导学生通过自主的活动,把已经积累起来的感性经验上升为理性的认识,并应用这些规律进行一些简便运算,解决一些实际问题。教学时充分利用学生已有的知识和经验你,通过具体的实际问题,引导学生经历运用已有知识解决问题的过程,并在对不同解法的比较中发现并提出问题,再通过举例、比较和分析,完成对运算规律的有意义建构。这样,通过现实的问题情境,引导学生在解决问题的过程中,逐步把自身经验系统中的感性认识抽象成形式化的数学结论。

  二、引导学生经历探索和发现运算律的过程,培养合情推理能力和符号意识。 教学时我精心设计学生的数学活动线索,在引导学生从现实的情境中发现和提出问题后,并没有立刻揭示有关结论,而是把学习的主动权交给学生,引导他们再举出类似的算式,通过计算、比较和分析,发现它们的共同点,并用自己能理解的方式描述规律。在此基础上,用含有字母的式子把发现的'规律表现出来,

  使得规律的表达更准确、简明、形象。这样安排教学,有利于初步感悟归纳的数学思想和方法,发展合情推理能力,又有利于学生获得初步的符号意识,感受数学表达的严谨和简练,也为以后学习用字母表示数做一些准备和铺垫。

  三、引导学生经历应用加法和乘法的运算律进行简便计算的过程,培养学生的运算能力。

  学习和探索运算律,不仅可以加深学生对有关运算的理解,而且可以有效地丰富学生解决计算问题的策略,使计算方法更简便、更灵活,发展学生的运算能力。例如,我在教学加法交换律和结合律之后,我根据教材提供线索专门设置不同计算方法的简便计算,引导学生联系已有的计算经验解决问题。我主要设计这两类题型:127+203 354+103 417+305 468+103 639-128-72 523-(23+46) 156-56-44有其容易出错的题目,主要从算式的意义上让学生理解简便计算的合理性。

  四、引导学生经历运用所学知识解决实际问题的过程,培养分析和解决问题的能力。

  众所周知适当引导学生运用所学知识解决一些实际问题,不仅可以深化学生对所学的知识的认识和理解,还可以帮助他们体验把现实问题抽象成数学问题的过程,感悟运用所学知识解决问题的策略和方法,提高分析和解决问题的能力,增强应用意识。教学时精心选择练习,主要是相遇问题以及相关结构的习题,如:

  这类问题引导学生经历解决问题的过程,并在不同解题方法中感受乘法分配律在解决问题中的应用,积累分析数量关系的经验,提高分析和解决问题的能力,培养应用意识。

  五、关注学生运用新知识解决旧知能力,培养学生自主解决问题的能力。

  本单元的 “探索与实践”第12题具有一定的综合性,解决问题时需要应用

  加法和乘法运算律、平均数等有关知识。教学时我更多地关注计算的过程,提醒学生怎样计算会更简便,而且又正确。解题过程如下:

  纵观解题过程,看似步骤较多写起来较麻烦,但是整个过程全部口算完成,不会出现半点差错。我相信如果教学中能有较多类似的关注,学生的计算能力会有质的飞跃。而且这样的问题再也不需要写出太多的步骤。

  六、积累素材,拓展书本知识,提高计算技能

  在练习中不断训练学生的数感,关注特殊数字形成计算技能。如:125、8、25、4、15、2、35??

  再如:适当补充乘法分配律的拓展练习 58×58+41×58+58 174×63+74×63 59×101-59知识源于积累,在学习中要不断提醒学生做个有心人,从根本上改变自己的学习态度,才能正真学到数学的奥妙和真谛。作为教学一线的教师要关注学生点滴进步,鼓励他们,真正地为学生发展着想,不断培养学生学习数学的兴趣。

运算律教学反思10

  这个星期和学生一起学习了乘法运算定律。乘法运算定律包括乘法交换律、乘法结合律。

  学生对于加法运算定律和乘法的交换律掌握较好,然而对于乘法结合律则运用得很糟糕。

  细想有以下几个原因:

  第一,学生现在只是能够初步认识,就算弄明白这几个运算定律,还不明白这几个运算定律的作用和意义。

  第二,学生不能正确的分析算式并正确的运用运算定律,如遇到25× 16就不知道如何计算,有时会把16分成10×6,有时会写成25×10+6 ,针对上述情况还需对学生加强算理、算法的理解,要在学生的脑海中渗透“凑整”的思想

  第三,对于有些算式,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。

  综上所述,学生并没有深刻体会到运算定律带来的.方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等接触的题目类型多了,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

运算律教学反思11

  这节课是四年级上册第56-57页的内容,是在学生已经掌握了加法计算方法的基础上展开教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,根据学生的认知规律,我坚持以“学生为主体”的理念,力求突出以学生发展为本的教育思想,所以整个教学过程以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。

  一、创设情境,营造愉悦的氛围,激发兴趣。

  课前的语言游戏,通过“调侃”的语气,营造轻松愉悦的气氛,同时,游戏方式中渗透着加法交换律的外形特点。接着以学生近期所关注的焦点——校运会为切入点,选择几个学生喜闻乐见的活动场景,激发学生的学习热情,为学生的自主探究创设良好的氛围。

  二、让学生经历有效的探索过程。数学学习的过程是一个发现问题、提出关于解决问题的.猜测、尝试解决、验证与修正、形成算法、推广应用的过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“列式猜想——观察发现——举例验证——概括规律”这一数学学习全过程。首先在学生初步认识了28+17=17+28这样的等式以后,引发学生的猜想:是不是其他的两个数相加也有这样的规律呢?让学生写一两个例子并验证,此时再问“像这样的等式你还能写多少个?”学生说“无数个”,唤醒了学生已有的知识经验,使学生初步感知加法运算律。通过四人小组合作探究:说说在写的过程中发现了什么规律?想办法把这个规律表示出来,让学生轻松体会到“两个加数交换位置和不变”这样的规律,学生尝试运用符号、图形、文字和字母等表示规律后,教师再引出简洁的表示方法“a+b=b+a”指出这就是加法交换律,从而发展学生的符号感。在探索加法结合律的过程中,通过引导学生用迁移类推的方法探究加法结合律。在学生动手举例验证后,通过四人小组合作讨论“观察这些等式,你发现了什么规律?”为学生提供自主探索的时间和空间,让学生经历运算律的发现和探索过程,获得成功的体验,增强学生学习数学的信心。

  三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。

  加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了探究学习的全过程,在此基础上,及时对探究加法交换律的方法做了小结,然后引导学生运用同样的研究方法开展研究加法结合律,利用课件出示探究方法的步骤,通过四人小组合作学习,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。为学生提供足够的自主探索的时间和空间,学生将已有学习方法,迁移类推到探索加法结合律的学习中来,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  四、教学中注意沟通知识间的联系。

  在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。

  同时,在教学过程中,我也认识到了一些不足之处:

  学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题,引导的不够巧妙,也正是因为这样,耗时比较多,以至后面的练习没能够完成,使得课堂不够自然流畅。

运算律教学反思12

  本节课借助研究相遇问题,来学习乘法分配律。教学时学生在观察信息窗的基础上提出问题,认识到求济青高速公路全长约多少千米就是求相遇时两车共行了多少千米。由于前面学生已有了学习相遇问题的基础,学生一般都会用两种方法解答。即先求1小时两辆汽车所行的速度之和,再求2小时共行多少千米;和先分别求出两辆汽车所行的路程,再把两车的路程相加。在此基础上引导学生观察比较这两种算式,模仿对乘法结合律学习的方法,引入对乘法分配律的研究。让学生再次经历猜测、验证、得出结论的数学学习方法的过程。加强学生学习方法的`指导。学生在学习中能够初步用自己的语言表述乘法分配律,虽然还不够准确,学生已能初步理解。乘法分配律的应用是个难点,对于像135×6+65×6这样的题,特点比较明显,让学生独立计算,尝试解决,然后集体交流,提升认识。交流时启发学生说清是怎样运用乘法分配律的就可以了。对12×105这样的题进行简算,特点不明显,要将105想成100与5的和,这是一个难点。我是这样突破的,12×105就是求105个12是多少,可先求100个12是多少,再求5个12是多少,合起来就是105个12是多少。这样学生能够更好地理解。在进行自主练习时,尽量让学生独立完成,在大部分学生完成后,集体订正,每道题都要求学生说说是怎样想的。提高学生的认识,使学生从形式到算理掌握这个运算定律。

运算律教学反思13

  教学目标:

  1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能应用这两个乘法运算律进行一些简便运算。

  2、在学习新知的过程中,培养学生新旧知识间的迁移能力,灵活选择和应用乘法交换律和乘法结合律。

  3、培养学生良好的学习习惯。

  教学重点:

  理解并掌握乘法运算律,能合理应用乘法运算律进行简便计算。

  教学难点:

  灵活选择和应用乘法交换律和乘法结合律,正确计算。

  教学过程:

  一、复习旧知

  1、谈话:加法中有哪些运算律?请举例。

  (加法交换律、加法结合律)

  2、猜想新知:你认为乘法中是否也有类似的定律?

  (学生发表自己的'想法)

  二、自主探究

  1、出示挂图

  说说题目的条件和问题分别是什么?列式计算。

  5×33×5

  观察这两道算式,你发现什么?

  用等号将这两道算式连起来。

  学生举例。

  2、给这种运算律取名,并相互用语言表述这种运算律。

  3、集体取名,并交流运算律的内容。

  4、用字母表示这种运算律。

  5、练习

  15×6=6×( ) ( )×46=( )×54

  □×○=( )×( ) a×8=8×( )

  6、自学乘法结合律

  7、集体交流自学情况。

  (1)举例

  (2)用字母表示

  (3)用语言表述乘法结合律的内容

  8、完成“试一试”

  三、巩固练习(略)

  四、课堂小结

  五、课堂作业

  教后反思:

  学生在学习了加法加换律和加法结合律的基础上学习乘法的运算律,相对来说比较轻松,因为乘法的运算律和加法的运算律相似,所以这节课我放手让学生自己去探究规律,这样不仅充分激发了学生学习的积极性,而且使学生体会发现新规律的方法,乘法结合律和乘法加换律相比,用语言完整地表述有一定困难,教师在学生充分交流的基础上帮助学生规范语言,既能使学生获得清晰的认识,又为学生展示自身才能创造了足够的空间。

运算律教学反思14

  1、确实复习课是很难上的一种课型,很容易给人单调、乏味的感觉,学生厌烦,老师没劲。这次的数学课是一节运算律的复习课。班上学生已经基本掌握了运算律的运用。提问时,学生很快回答出加法交换律、加法结合律、乘法交换律、结合律、分配律的字母公式。在学生练习中也证明了学生对基本运算律的运用掌握的不错,只是乘法对加法的分配律掌握的.不太好,因此我在复习中增加了一个有趣的小故事,用来帮助学生记忆,事后证明学生掌握的不错。

  2、这节课我以学生为主,让学生自己回忆规律、公式,并且对学生自己做得题目也让他们自己分析、讲解、评价。学生参与积极,收到了良好的效果。

  3、这节课也有不足之处,学生说的多了,留给学生练习的时间就相对减少了,这节课只是把书上的练习刚好做完,没有时间补充新的题目。今后要想办法尽量弥补这个不足,充分利用时间给学生在课堂上练习的机会。

运算律教学反思15

  本单元的内容有:加法运算定律,包括加法交换律和加法结合律。乘法运算定律,包括乘法交换律、乘法结合律和乘法分配律。学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:

  第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)

  第二,学生能正确的.分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如42X25,运用运算定律计算这个算式,很多学生是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

  综上所述,解决办法只能是多练,不断的培养学生的数感,在不断的练习过程中,体会应该如何运用运算定律。

【运算律教学反思】相关文章:

运算律说课稿09-03

《运算》教学反思06-12

《数的运算》教学反思10-03

《混合运算》教学反思10-24

《混合运算》教学反思08-18

混合运算教学反思10-13

《简便运算》教学反思10-02

交换律教学反思09-21

《运算定律》教学反思05-28