圆柱的体积教学反思

时间:2025-01-01 15:00:57 教学反思 我要投稿

圆柱的体积教学反思15篇

  作为一位到岗不久的教师,我们要在教学中快速成长,我们可以把教学过程中的感悟记录在教学反思中,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的圆柱的体积教学反思,仅供参考,希望能够帮助到大家。

圆柱的体积教学反思15篇

圆柱的体积教学反思1

  《圆柱的体积》一课是在学生已经学习了《圆的面积》计算和《长方体的体积》及《圆柱的表面积》等相关的知识的基础上教学的。同时又为学生今后进一步学习其他立体图形的有关知识做好充分准备的一堂课。结合本课的教学实际情况,谈几点反思:

  一、利用多媒体创设情境,促进了学生思维发展。

  传统教学只关注教给学生多少知识,教师把学生当成知识的“容器”。在这种被迫无奈的条件下,学生的学习只是被动的接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里我利用多媒体创设了丰富的教学情境,上课开始提出“如果我们要想知道这块橡皮泥的体积或这个圆柱体里水的体积,该怎么办?”学生提出“把橡皮泥捏成长方体的形状,把圆柱里的水再倒入一个长方体的盒子里,就可以求出来水的体积了”。这样不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,引导学生经历圆柱体积的推导过程,并适时用多媒体进行动态演示,学生在兴趣盎然中经历了自主探索、独立思考、分析整理、合作交流等过程,发现了数学问题的存在,经历了知识产生的.过程,理解和掌握了一定的数学思想和方法,获得了数学活动经验,掌握了数学基本知识。在练习的环节我用多媒体提出计算鸡蛋体积的思维练习,调动的学生的兴趣,从而促进了学生的思维发展

  二、学生通过探究活动,经历了基本科学方法和过程。

  “强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神。”这是课改的明确要求。这里学生亲身经历提出问题、分析判断、动手实践、观察记录、收集整理、得出结论的过程,就是科学研究的过程,在这其中学生获得了直接的实践经验,尝试、经历了基本科学方法和过程。数学课堂教学中应将教师的验证性操作变成学生的探究性上活动,使学生在探究性活动中掌握知识,发展能力。

  三、体验了丰富的学习人生。

  创设了丰富的情境和氛围让学生去经历、体验、领悟,在知识发生、发展的过程中,学生的学习兴趣、热情、动机、学习态度和责任,搜集信息和处理信息的能力,合作交流能力以及对个人价值、人类价值、科学价值等的认识都得到了发展。同时学生精神世界的发展从数学学习中获得了多方面的滋养,在对数学知识的认识、感受、体验、改变、创造的过程中,不断丰富和完善了自己的生命世界,体验了丰富的学习人生,满足了生命的成长需要。

  此外,本课也存在不足之处:如有的后进生参与活动的意识不强,还有待在以后教学中改进和提高。

圆柱的体积教学反思2

  在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节

  课的教学,我觉得有以下几个方面值得探讨:

  一、联系旧知,导入新知。

  圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。

  二、动手操作,探索新知。

  学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一块月饼切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。

  三、课件展示,加深理解。

  为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的.物体越来越接近长方体。” 但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的转化方法。

  四、分层练习,发散思维。

  为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。

  但是不成功的地方也有,如学生在操作时有些学生拼的不是长方体,而是其他的形状,这里由于是上公开课的原因就没有有针对性的讲解,只做到了多数学生的指导而没有做到面向全体学生,这点我觉得在课堂上很难做到。

  总之,通过这次的国培学习,使我的思想认识和课堂技能都有了新的认识,感谢国培!

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

圆柱的体积教学反思3

  本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的.体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

  反思不足: 1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。3、数学要应用于生活,应该多出些有关生活实际的练习题。

圆柱的体积教学反思4

  圆柱的体积教学反思

  在这节课学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的.体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程.学生虽然没有亲身经历,但也一目了然.,学习效果还可以。

  圆柱的体积练习课教学反思

  本节的练习,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识经验解决新的问题,在新旧知识的联系上,使学生想象合理、联系有方。

圆柱的体积教学反思5

  《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的.体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、教学要达到三个目的

  一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。

  二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。

  三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。

圆柱的体积教学反思6

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。

编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。

数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的'表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

圆柱的体积教学反思7

  《圆柱的体积》以前教学此内容时,由于没有相应的教具,往往直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=SH,让学生套公式练习;这学期我教本节课内容时,课前作了充分准备了教具,再加之网上收集整理出来相应的教学课件,课堂教学我让学生自己动手实践、自主探索与合作交流,让学生实践中体验,从而获得知识。总之让学生的手、脑、嘴、眼各种器官充分利用起来,让学生不仅学到知识,而且让学生体验学习的过程,真正理解圆柱体积的推导过程,让学生真正成为学习的主人。对此,我有以下的感想

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是我告诉的,而是学生在自己艰苦的学习中发现并从学生的口里说出来的,这样的.知识具有个人意义,理解更深刻。这样学生不但尝到了知识,更重要的是他们掌握了学习数学的方法,这样有利于孩子将来的发展。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。本节课我让学生联系圆的面积推导的基础上,让学生自主探究圆柱的体积的推导过程。充分体现了这一理念。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

圆柱的体积教学反思8

  本节课教学设计从回忆旧知入手,通过猜测、观察、交流、验证、归纳等数学活动,让学生经历探索新知的全过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。

  新授部分,经历了问题引入、猜测、自主探索、合作交流、验证归纳五个环节,环环相扣,步步深入。合作交流这个环节给了学生充足的时间去探索、交流,通过把圆柱切拼成近似的长方体,再对比二者的体积、底面积、高之间的联系,推导出了圆柱的体积计算公式,从而得出圆柱和长方体有着相同的体积计算公式,然后要求学生回顾一下我们是怎样得到“圆柱体的体积=底面积×高”这个结论的.。经历了公式的推导过程,也让学生体验了数学问题的探索性和挑战性,感受到数学思考过程的条理性和数学结论的确定性。

  课堂上,我将引导启发、自主探究与合作交流等多种教学方式相结合,借助于多媒体课件化静为动,把教师说不清道不明,学生不易理解的圆柱切拼成近似长方体的转化过程一目了然地展现在学生面前。教学设计充分体现了“以学生为中心”的思想,真正方便了学生学习。做到根据教学内容的实际需要,充分发挥多媒体技术的优势,突出教学重点,突破教学难点,丰富了教学内容,精彩了课堂,激发了学生的学习兴趣。

  学生在数学课堂上建立起新概念、习得规律之后,必须完成一定数量的数学练习题,才能巩固所学知识。本节课,我充分挖掘习题的价值,在巩固中拓展,让学生的思维不停留于某一固定的模式中,而能灵活应变,变有限为无限,让不同层次学生的思维水平在原有水平基础上都得以提升。

  不足之处:课件代替了板书(由于课前班班通出现小小故障,我在打开课件时有点着急,课件出示错误,又耽误了时间,没有在黑板上板书课题)。时间分配不够合理,练习时板演学生太少(合作交流环节给了学生大量的时间去探索、交流,在练习时已经没有足够的时间了,就让一个学生板演了,致使后边的拓展提高没来得及进行,就进行检测了)。教师的评价方式单一。

  改进措施:每节课要准备充分,提前候课,避免出现差错,耽误时间,练习量不够或完不成任务。课堂上要多关注中等偏下的学生,老师的评价机制要多样,让他们学会倾听,乐于学习,多给他们展示交流的机会。课堂上课件只起一个辅助作用,不能喧宾夺主。

  今后还要一如继往地做好日教研,上完课及时与本组成员沟通、交流,让课堂教学更高效。

圆柱的体积教学反思9

  在新课程不断向纵深推进的今天,我们的课堂既要继承传统,把课上杂实。同时,也要把课上厚实。在教《圆柱的体积》一课时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识,并利用新知去解决实际问题。对此,我作如下反思:

  (一)在学习情境中体验数学

  《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、猜测、操作、验证、归纳等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的价值,同时掌握必要的基础知识与基本技能。

  在这节课中,我承接了上节课的内容,提问引出给水杯做布套是在求圆柱的表面积,求圆柱能装多少水是在求圆柱的容积,也就是体积,然后顺势提出你能计算圆柱体的体积吗?这一全课的核心问题,从而引发学生的猜测、讨论、交流等数学活动,引导学生可以用以前学过的知识将圆柱转化成近似的长方体,然后让学生在小组内利用手中的'学具进行操作实验将其插拼成一个近似长方体;通过让学生观察比较,发现联系:二者之间什么变了,什么不变?接着我使用了课件-----把圆柱体沿着它的直径切成了32和64等份,拼成一个近似的长方体 ,展示切拼后的长方体,让学生更加直观的观察,从而证实自己的推测。并总结出圆柱体的体积计算公式。。

  由此至终让学生经历了做数学的过程,并伴随着问题的圆满解决,又使学生体验到了成功的喜悦与满足。与此同时,使学生理解与感受到了数学的魅力。

  (二)在观察操作中探索新知

  数学学习过程充满着观察、验证、推理等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。观察是课程实施中经常让学生进行的一种活动,观察的效果取决于观察者是否能够关注被观察的对象。操作是让学生进行感知的另一种活动,是一种内部思维的外在具体化。交流是在观察操作基础上的一种由动作上升到语言概括的过程。

  在本节课的动手操作中,让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。 你有什么发现?你是怎样想的?等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。

  (三)在练习中巩固新知,提升能力

  《数学课程标准》要求以人为本,以学生发展为本。因此,教师应根据不同的教学内容精心设计练习,促进学生全面发展。我充分考虑到本班学生的实际水平及年龄特征,选择了贴近学生生活的练习题,有坡度,由易到难,循序渐进,激发了学生的学习兴趣,使各个层次的学生都能得到不同的锻炼,能力都有所提升。

  (四)在本节课中的不足之处

  由于学生的学具有限,在很大程度上阻碍了学生主动探究的欲望和动手操作的能力,加上本人能力有限,语言组织能力不是很好,使课堂气氛不是那么活跃,课堂显得有些压抑,在今后的教学中还有待于提高。

圆柱的体积教学反思10

  学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的`份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。

  非常遗憾的是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然.

圆柱的体积教学反思11

  “圆柱体积计算公式的推导”是在同学已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为同学今后进一步学习其他形体知识做好充沛准备的一堂课。

  课始,教师创设问题情境,不时地引导同学运用已有的生活经验和旧知,探索和解决实际问题,并制造认知抵触,形成了“任务驱动”的探究氛围。

  展开局部,教师为同学提供了动手操作、观察以和交流讨论的平台,让同学在体验和探索空间与图形的过程中不时积累几何知识,以协助同学理解实际的三维世界,逐步发展其空间观念。

  练习布置注重密切联系生活实际,让同学运用自身刚推导的圆柱体积计算公式解决引入环节中的`两个问题,使其认识数学的价值,切实体验到数学存在于自身的身边,数学对于了解周围世界和解决实际问题是非常有作用的。

  教师无论是导入环节,还是新课局部都恰当地引导同学进行知识迁移,充沛地让同学感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。

圆柱的体积教学反思12

  圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在圆的体积公式推导过程中,给予学生足够的`时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生老师这样才能寓教于乐,从而达到了事半功倍的效果。在教此内容时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、展示知识的发生过程,让学生在参与中学习。

  现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。展开部分,首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。在验证圆柱的体积是否与圆柱的底面积和高有关的过程中,我让两名学生到台上演示,学生兴致很高,都想到台上进行操作,被选出进行演示的学生非常认真地进行操作,而其他学生也是非常认真的进行观察。因此推导得出圆柱体积公式时,学生感到非常好懂,也学得很轻松。

  二、在讨论交流中学习。

  通过实验验证之后,让学生看课件后,小小组进行了如下讨论:

  (1)拼成的近似长方体体积与原来的圆柱体积有什么关系?

  (2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?

  (3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强

  团队协作意识。在这一环节中,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:学生亲身体验的感受不够,因为圆柱体积演示器只有一套,所以,只能是个别学生进行操作,大部分学生只能远距离观察。有些学生因看得不清楚而观察、思考得不正确。如果条件允许,演示器多一些,能让学生人人都进行操作,我想学生的参与率、学生动手能力、学生的观察与思考、教学效果都会更好。

圆柱的体积教学反思13

  这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“ 从生活中来到生活中去” 的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

  一、让学生在现实情境中体验和理解数学

  在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的'问题多在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。的思想。

  三、练习时,要形式多样,层层递进

  例题“ 练一练” 中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:

  1 .已知圆柱底面积(s )和高(h ),计算圆柱体积可以应用这一公式:V=sh

  2 .已知圆柱底面半径(r )和高(h ),计算圆柱体积可以应用这一公式:V=πr?h 。

  3 .已知圆柱底面直径(d )和高(h ),计算圆柱体积可以应用这一公式:V=π(d/2)?h 。

  4 .已知圆柱底面周长(c )和高(h ),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)?h 。

  5 .已知圆柱侧面积(s 侧)和高(h ),计算圆柱体积可以应用这一公式:V=π(s 侧÷h÷π÷2)?h 。

  在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。

圆柱的体积教学反思14

  新课程观强调:

  教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?本人结合“圆柱的体积”一课谈谈自己的实践与思考。

  [片段一]

  师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1。5米,它的体积是多少?

  由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

  1.5米=150厘米20×1150=3000(立方厘米)

  师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

  ①20平方厘米=0.002平方米 0。002×11.5=0.003(立方米)

  ②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)

  师:为什么会出现三种结果?

  经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

  [片断二]

  巩固与应用阶段,我将教材练习二中的一个填表题进行了加工组合呈现给学生这样一个表格。

  学生填表后,师:观察前两组数据,你想说什么?

  学生独立思考后再小组交流,最后汇报。

  生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

  生2:两个圆柱的高相等,底面积越大,体积就越大。

  师:观察后两组数据,你想说什么?

  有了前面的基础,学生很容易说出了后两组的关系。

  学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。

  [片段三]

  教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

  学生动手测量自备的.圆柱形茶杯的有关数据并计算它的体积。

  师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

  [教学反思]

  精心研究教材是用好教材的基础

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

  落实课标理念是用好教材的关键

  能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

  学生获得发展是用好教材的标准

  有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

圆柱的体积教学反思15

  本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

  1、重视先猜想、再验证的思路来引入教学。

  新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

  2、重视利用知识、方法的迁移来展开教学。

  本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的'长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

  3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

  核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

  当然,需要注意和改进的地方是:书写格式的规范。

【圆柱的体积教学反思】相关文章:

《圆柱的体积》教学反思06-25

圆柱的体积教学反思07-02

圆柱的体积教学反思09-03

《圆柱的体积》教学反思11-02

《圆柱的体积》教学反思(15篇)10-13

圆柱的体积教学反思 15篇07-30

圆柱的体积教学反思(15篇)09-16

圆柱的体积教学反思(精选15篇)06-01

《圆柱的体积》教学反思15篇10-10